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Preface

For some time now I’ve been floating the idea of writing
a book about category theory that would be targeted at
programmers. Mind you, not computer scientists but pro-
grammers — engineers rather than scientists. I know this
sounds crazy and I am properly scared. I can’t deny that
there is a huge gap between science and engineering be-
cause I have worked on both sides of the divide. But I’ve al-
ways felt a very strong compulsion to explain things. I have
tremendous admiration for Richard Feynman who was the
master of simple explanations. I know I’m no Feynman,
but I will try my best. I’m starting by publishing this pref-
ace — which is supposed to motivate the reader to learn
category theory — in hopes of starting a discussion and
soliciting feedback.1

Iwill attempt, in the space of a few paragraphs, to convince you
that this book is written for you, and whatever objections you might

have to learning one of the most abstract branches of mathematics in
your “copious spare time” are totally unfounded.

1You may also watch me teaching this material to a live audience.
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My optimism is based on several observations. First, category the-
ory is a treasure trove of extremely useful programming ideas. Haskell
programmers have been tapping this resource for a long time, and the
ideas are slowly percolating into other languages, but this process is
too slow. We need to speed it up.

Second, there are many different kinds of math, and they appeal to
different audiences. You might be allergic to calculus or algebra, but it
doesn’t mean you won’t enjoy category theory. I would go as far as to
argue that category theory is the kind of math that is particularly well
suited for the minds of programmers. That’s because category theory
— rather than dealing with particulars — deals with structure. It deals
with the kind of structure that makes programs composable.

Composition is at the very root of category theory — it’s part of the
definition of the category itself. And I will argue strongly that compo-
sition is the essence of programming. We’ve been composing things
forever, long before some great engineer came up with the idea of a
subroutine. Some time ago the principles of structural programming
revolutionized programming because they made blocks of code com-
posable. Then came object oriented programming, which is all about
composing objects. Functional programming is not only about com-
posing functions and algebraic data structures — it makes concurrency
composable — something that’s virtually impossible with other pro-
gramming paradigms.

Third, I have a secret weapon, a butcher’s knife, with which I will
butcher math to make it more palatable to programmers. When you’re
a professional mathematician, you have to be very careful to get all
your assumptions straight, qualify every statement properly, and con-
struct all your proofs rigorously. This makes mathematical papers and
books extremely hard to read for an outsider. I’m a physicist by train-
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ing, and in physics we made amazing advances using informal reason-
ing. Mathematicians laughed at the Dirac delta function, which was
made up on the spot by the great physicist P. A. M. Dirac to solve some
differential equations. They stopped laughing when they discovered a
completely new branch of calculus called distribution theory that for-
malized Dirac’s insights.

Of course when using hand-waving arguments you run the risk of
saying something blatantly wrong, so I will try to make sure that there
is solid mathematical theory behind informal arguments in this book.
I do have a worn-out copy of Saunders Mac Lane’s Category Theory for
the Working Mathematician on my nightstand.

Since this is category theory for programmers I will illustrate all ma-
jor concepts using computer code. You are probably aware that func-
tional languages are closer to math than the more popular imperative
languages. They also offer more abstracting power. So a natural temp-
tation would be to say: Youmust learn Haskell before the bounty of cat-
egory theory becomes available to you. But that would imply that cate-
gory theory has no application outside of functional programming and
that’s simply not true. So I will provide a lot of C++ examples. Granted,
you’ll have to overcome some ugly syntax, the patterns might not stand
out from the background of verbosity, and you might be forced to do
some copy and paste in lieu of higher abstraction, but that’s just the lot
of a C++ programmer.

But you’re not off the hook as far as Haskell is concerned. You don’t
have to become a Haskell programmer, but you need it as a language
for sketching and documenting ideas to be implemented in C++. That’s
exactly how I got started with Haskell. I found its terse syntax and pow-
erful type system a great help in understanding and implementing C++
templates, data structures, and algorithms. But since I can’t expect the

ix



readers to already know Haskell, I will introduce it slowly and explain
everything as I go.

If you’re an experienced programmer, you might be asking your-
self: I’ve been coding for so long without worrying about category the-
ory or functional methods, so what’s changed? Surely you can’t help
but notice that there’s been a steady stream of new functional fea-
tures invading imperative languages. Even Java, the bastion of object-
oriented programming, let the lambdas in C++ has recently been evolv-
ing at a frantic pace — a new standard every few years — trying to
catch up with the changing world. All this activity is in preparation for
a disruptive change or, as we physicist call it, a phase transition. If you
keep heating water, it will eventually start boiling. We are now in the
position of a frog that must decide if it should continue swimming in
increasingly hot water, or start looking for some alternatives.

One of the forces that are driving the big change is the multicore
revolution.The prevailing programming paradigm, object oriented pro-
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gramming, doesn’t buy you anything in the realm of concurrency and
parallelism, and instead encourages dangerous and buggy design. Data
hiding, the basic premise of object orientation, when combined with
sharing and mutation, becomes a recipe for data races. The idea of
combining a mutex with the data it protects is nice but, unfortunately,
locks don’t compose, and lock hiding makes deadlocks more likely and
harder to debug.

But even in the absence of concurrency, the growing complexity
of software systems is testing the limits of scalability of the impera-
tive paradigm. To put it simply, side effects are getting out of hand.
Granted, functions that have side effects are often convenient and easy
to write. Their effects can in principle be encoded in their names and
in the comments. A function called SetPassword or WriteFile is obvi-
ously mutating some state and generating side effects, and we are used
to dealing with that. It’s only when we start composing functions that
have side effects on top of other functions that have side effects, and
so on, that things start getting hairy. It’s not that side effects are in-
herently bad — it’s the fact that they are hidden from view that makes
them impossible to manage at larger scales. Side effects don’t scale, and
imperative programming is all about side effects.

Changes in hardware and the growing complexity of software are
forcing us to rethink the foundations of programming. Just like the
builders of Europe’s great gothic cathedrals we’ve been honing our
craft to the limits of material and structure. There is an unfinished
gothic cathedral in Beauvais, France, that stands witness to this deeply
human struggle with limitations. It was intended to beat all previous
records of height and lightness, but it suffered a series of collapses. Ad
hoc measures like iron rods and wooden supports keep it from disinte-
grating, but obviously a lot of things went wrong. From a modern per-
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Ad hoc measures preventing the Beauvais cathedral from collapsing.

spective, it’s a miracle that so many gothic structures had been success-
fully completed without the help of modern material science, computer
modelling, finite element analysis, and general math and physics. I hope
future generations will be as admiring of the programming skills we’ve
been displaying in building complex operating systems, web servers,
and the internet infrastructure. And, frankly, they should, becausewe’ve
done all this based on very flimsy theoretical foundations. We have to
fix those foundations if we want to move forward.
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Part I

Part One
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1
Category: The Essence of Composition

Acategory is an embarrassingly simple concept. A category con-
sists of objects and arrows that go between them. That’s why cate-

gories are so easy to represent pictorially. An object can be drawn as
a circle or a point, and an arrow… is an arrow. (Just for variety, I will
occasionally draw objects as piggies and arrows as fireworks.) But the
essence of a category is composition. Or, if you prefer, the essence of
composition is a category. Arrows compose, so if you have an arrow
from object A to object B, and another arrow from object B to object
C, then there must be an arrow — their composition — that goes from
A to C.

1.1 Arrows as Functions

Is this already too much abstract nonsense? Do not despair. Let’s talk
concretes. Think of arrows, which are also called morphisms, as func-
tions. You have a function f that takes an argument of type A and
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In a category, if there is an arrow going from A to B and an arrow going from B to C then there
must also be a direct arrow from A to C that is their composition. This diagram is not a full
category because it’s missing identity morphisms (see later).

returns a B. You have another function g that takes a B and returns a
C. You can compose them by passing the result of f to g. You have just
defined a new function that takes an A and returns a C.

In math, such composition is denoted by a small circle between
functions: 𝑔 ∘ 𝑓 . Notice the right to left order of composition. For some
people this is confusing. You may be familiar with the pipe notation in
Unix, as in:

lsof | grep Chrome

or the chevron >> in F#, which both go from left to right. But in math-
ematics and in Haskell functions compose right to left. It helps if you
read g◦f as “g after f.”

Let’s make this evenmore explicit by writing some C code.We have
one function f that takes an argument of type A and returns a value of
type B:

3



B f(A a);

and another:

C g(B b);

Their composition is:

C g_after_f(A a)

{

return g(f(a));

}

Here, again, you see right-to-left composition: g(f(a)); this time in C.
I wish I could tell you that there is a template in the C++ Stan-

dard Library that takes two functions and returns their composition,
but there isn’t one. So let’s try some Haskell for a change. Here’s the
declaration of a function from A to B:

f :: A -> B

Similarly:

g :: B -> C

Their composition is:

g . f

Once you see how simple things are in Haskell, the inability to express
straightforward functional concepts in C++ is a little embarrassing. In
fact, Haskell will let you use Unicode characters so you can write com-
position as:
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g ◦ f

You can even use Unicode double colons and arrows:

f ∷ A → B

So here’s the first Haskell lesson: Double colon means “has the type
of…” A function type is created by inserting an arrow between two
types. You compose two functions by inserting a period between them
(or a Unicode circle).

1.2 Properties of Composition

There are two extremely important properties that the composition in
any category must satisfy.

1. Composition is associative. If you have three morphisms, f, g, and
h, that can be composed (that is, their objects match end-to-end),
you don’t need parentheses to compose them. In math notation
this is expressed as:

h◦(g◦f) = (h◦g)◦f = h◦g◦f

In (pseudo) Haskell:

f :: A -> B

g :: B -> C

h :: C -> D

h . (g . f) == (h . g) . f == h . g . f

5



(I said “pseudo,” because equality is not defined for functions.)
Associativity is pretty obvious when dealing with functions, but
it may be not as obvious in other categories.

2. For every object A there is an arrow which is a unit of compo-
sition. This arrow loops from the object to itself. Being a unit of
composition means that, when composed with any arrow that ei-
ther starts at A or ends at A, respectively, it gives back the same
arrow. The unit arrow for object A is called idA (identity on A).
In math notation, if f goes from A to B then
f◦idA = f

and
idB◦f = f

When dealing with functions, the identity arrow is implemented as the
identity function that just returns back its argument. The implementa-
tion is the same for every type, whichmeans this function is universally
polymorphic. In C++ we could define it as a template:

template<class T> T id(T x) { return x; }

Of course, in C++ nothing is that simple, because you have to take into
account not only what you’re passing but also how (that is, by value,
by reference, by const reference, by move, and so on).

In Haskell, the identity function is part of the standard library (called
Prelude). Here’s its declaration and definition:

id :: a -> a

id x = x
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As you can see, polymorphic functions in Haskell are a piece of cake. In
the declaration, you just replace the type with a type variable. Here’s
the trick: names of concrete types always start with a capital letter,
names of type variables start with a lowercase letter. So here a stands
for all types.

Haskell function definitions consist of the name of the function fol-
lowed by formal parameters — here just one, x.The body of the function
follows the equal sign. This terseness is often shocking to newcomers
but you will quickly see that it makes perfect sense. Function definition
and function call are the bread and butter of functional programming
so their syntax is reduced to the bare minimum. Not only are there no
parentheses around the argument list but there are no commas between
arguments (you’ll see that later, when we define functions of multiple
arguments).

The body of a function is always an expression — there are no state-
ments in functions. The result of a function is this expression — here,
just x.

This concludes our second Haskell lesson.
The identity conditions can be written (again, in pseudo-Haskell)

as:

f . id == f

id . f == f

You might be asking yourself the question: Why would anyone bother
with the identity function — a function that does nothing? Then again,
why do we bother with the number zero? Zero is a symbol for nothing.
Ancient Romans had a number system without a zero and they were
able to build excellent roads and aqueducts, some of which survive to
this day.
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Neutral values like zero or id are extremely useful when working
with symbolic variables. That’s why Romans were not very good at al-
gebra, whereas the Arabs and the Persians, who were familiar with the
concept of zero, were. So the identity function becomes very handy as
an argument to, or a return from, a higher-order function. Higher order
functions are what make symbolic manipulation of functions possible.
They are the algebra of functions.

To summarize: A category consists of objects and arrows (mor-
phisms). Arrows can be composed, and the composition is associative.
Every object has an identity arrow that serves as a unit under compo-
sition.

1.3 Composition is the Essence of Programming

Functional programmers have a peculiar way of approaching problems.
They start by asking very Zen-like questions. For instance, when de-
signing an interactive program, they would ask: What is interaction?
When implementing Conway’s Game of Life, theywould probably pon-
der about the meaning of life. In this spirit, I’m going to ask: What is
programming? At the most basic level, programming is about telling
the computer what to do. “Take the contents of memory address x and
add it to the contents of the register EAX.” But even when we program
in assembly, the instructions we give the computer are an expression of
something more meaningful. We are solving a non-trivial problem (if
it were trivial, we wouldn’t need the help of the computer). And how
do we solve problems? We decompose bigger problems into smaller
problems. If the smaller problems are still too big, we decompose them
further, and so on. Finally, we write code that solves all the small prob-
lems. And then comes the essence of programming: we compose those
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pieces of code to create solutions to larger problems. Decomposition
wouldn’t make sense if we weren’t able to put the pieces back together.

This process of hierarchical decomposition and recomposition is
not imposed on us by computers. It reflects the limitations of the human
mind. Our brains can only deal with a small number of concepts at a
time. One of the most cited papers in psychology, The Magical Number
Seven, Plus or Minus Two, postulated that we can only keep 7 ± 2
“chunks” of information in our minds. The details of our understanding
of the human short-term memory might be changing, but we know for
sure that it’s limited. The bottom line is that we are unable to deal with
the soup of objects or the spaghetti of code. We need structure not
because well-structured programs are pleasant to look at, but because
otherwise our brains can’t process them efficiently. We often describe
some piece of code as elegant or beautiful, but what we really mean
is that it’s easy to process by our limited human minds. Elegant code
creates chunks that are just the right size and come in just the right
number for our mental digestive system to assimilate them.

So what are the right chunks for the composition of programs?
Their surface area has to increase slower than their volume. (I like this
analogy because of the intuition that the surface area of a geometric ob-
ject grows with the square of its size — slower than the volume, which
grows with the cube of its size.) The surface area is the information we
need in order to compose chunks. The volume is the information we
need in order to implement them. The idea is that, once a chunk is im-
plemented, we can forget about the details of its implementation and
concentrate on how it interacts with other chunks. In object-oriented
programming, the surface is the class declaration of the object, or its
abstract interface. In functional programming, it’s the declaration of a
function. (I’m simplifying things a bit, but that’s the gist of it.)

9

http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two


Category theory is extreme in the sense that it actively discourages
us from looking inside the objects. An object in category theory is an
abstract nebulous entity. All you can ever know about it is how it re-
lates to other object — how it connects with them using arrows. This is
how internet search engines rank web sites by analyzing incoming and
outgoing links (except when they cheat). In object-oriented program-
ming, an idealized object is only visible through its abstract interface
(pure surface, no volume), with methods playing the role of arrows.
The moment you have to dig into the implementation of the object in
order to understand how to compose it with other objects, you’ve lost
the advantages of your programming paradigm.

1.4 Challenges

1. Implement, as best as you can, the identity function in your fa-
vorite language (or the second favorite, if your favorite language
happens to be Haskell).

2. Implement the composition function in your favorite language.
It takes two functions as arguments and returns a function that
is their composition.

3. Write a program that tries to test that your composition function
respects identity.

4. Is the world-wide web a category in any sense? Are links mor-
phisms?

5. Is Facebook a category, with people as objects and friendships as
morphisms?

6. When is a directed graph a category?
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2
Types and Functions

The category of types and functions plays an important role
in programming, so let’s talk about what types are and why we

need them.

2.1 Who Needs Types?

There seems to be some controversy about the advantages of static vs.
dynamic and strong vs. weak typing. Let me illustrate these choices
with a thought experiment. Imagine millions of monkeys at computer
keyboards happily hitting random keys, producing programs, compil-
ing, and running them.

With machine language, any combination of bytes produced by
monkeys would be accepted and run. But with higher level languages,
we do appreciate the fact that a compiler is able to detect lexical and
grammatical errors. Lots of monkeys will go without bananas, but the
remaining programs will have a better chance of being useful. Type
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checking provides yet another barrier against nonsensical programs.
Moreover, whereas in a dynamically typed language, type mismatches
would be discovered at runtime, in strongly typed statically checked
languages type mismatches are discovered at compile time, eliminat-
ing lots of incorrect programs before they have a chance to run.

So the question is, do we want to make monkeys happy, or do we
want to produce correct programs?

The usual goal in the typing monkeys thought experiment is the
production of the complete works of Shakespeare. Having a spell checker
and a grammar checker in the loop would drastically increase the odds.
The analog of a type checker would go even further by making sure
that, once Romeo is declared a human being, he doesn’t sprout leaves
or trap photons in his powerful gravitational field.
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2.2 Types Are About Composability

Category theory is about composing arrows. But not any two arrows
can be composed. The target object of one arrow must be the same
as the source source object of the next arrow. In programming we pass
the results on one function to another.The programwill not work if the
target function is not able to correctly interpret the data produced by
the source function. The two ends must fit for the composition to work.
The stronger the type system of the language, the better this match can
be described and mechanically verified.

The only serious argument I hear against strong static type check-
ing is that it might eliminate some programs that are semantically cor-
rect. In practice, this happens extremely rarely and, in any case, every
language provides some kind of a backdoor to bypass the type sys-
tem when that’s really necessary. Even Haskell has unsafeCoerce. But
such devices should be used judiciously. Franz Kafka’s character, Gre-
gor Samsa, breaks the type systemwhen hemetamorphoses into a giant
bug, and we all know how it ends.

Another argument I hear a lot is that dealing with types imposes
too much burden on the programmer. I could sympathize with this sen-
timent after having to write a few declarations of iterators in C++ my-
self, except that there is a technology called type inference that lets the
compiler deduce most of the types from the context in which they are
used. In C++, you can now declare a variable auto and let the compiler
figure out its type.

In Haskell, except on rare occasions, type annotations are purely
optional. Programmers tend to use them anyway, because they can tell
a lot about the semantics of code, and theymake compilation errors eas-
ier to understand. It’s a common practice in Haskell to start a project by
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designing the types. Later, type annotations drive the implementation
and become compiler-enforced comments.

Strong static typing is often used as an excuse for not testing the
code. You may sometimes hear Haskell programmers saying, “If it com-
piles, it must be correct.” Of course, there is no guarantee that a type-
correct program is correct in the sense of producing the right output.
The result of this cavalier attitude is that in several studies Haskell
didn’t come as strongly ahead of the pack in code quality as one would
expect. It seems that, in the commercial setting, the pressure to fix bugs
is applied only up to a certain quality level, which has everything to
do with the economics of software development and the tolerance of
the end user, and very little to do with the programming language
or methodology. A better criterion would be to measure how many
projects fall behind schedule or are delivered with drastically reduced
functionality.

As for the argument that unit testing can replace strong typing,
consider the common refactoring practice in strongly typed languages:
changing the type of an argument of a particular function. In a strongly
typed language, it’s enough to modify the declaration of that function
and then fix all the build breaks. In a weakly typed language, the fact
that a function now expects different data cannot be propagated to call
sites. Unit testing may catch some of the mismatches, but testing is al-
most always a probabilistic rather than a deterministic process. Testing
is a poor substitute for proof.

2.3 What Are Types?

The simplest intuition for types is that they are sets of values. The type
Bool (remember, concrete types start with a capital letter in Haskell) is
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a two-element set of True and False. Type Char is a set of all Unicode
characters like a or ą.

Sets can be finite or infinite. The type of String, which is a syn-
onym for a list of Char, is an example of an infinite set.

When we declare x to be an Integer:

x :: Integer

we are saying that it’s an element of the set of integers. Integer in
Haskell is an infinite set, and it can be used to do arbitrary precision
arithmetic. There is also a finite-set Int that corresponds to machine
type, just like the C++ int.

There are some subtleties that make this identification of types and
sets tricky.There are problemswith polymorphic functions that involve
circular definitions, andwith the fact that you can’t have a set of all sets;
but as I promised, I won’t be a stickler for math. The great thing is that
there is a category of sets, which is called Set, and we’ll just work with
it. In Set, objects are sets and morphisms (arrows) are functions.

Set is a very special category, because we can actually peek inside
its objects and get a lot of intuitions from doing that. For instance, we
know that an empty set has no elements. We know that there are spe-
cial one-element sets. We know that functions map elements of one set
to elements of another set. They can map two elements to one, but not
one element to two. We know that an identity function maps each ele-
ment of a set to itself, and so on. The plan is to gradually forget all this
information and instead express all those notions in purely categorical
terms, that is in terms of objects and arrows.

In the ideal world we would just say that Haskell types are sets and
Haskell functions are mathematical functions between sets. There is
just one little problem: A mathematical function does not execute any
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code — it just knows the answer. A Haskell function has to calculate
the answer. It’s not a problem if the answer can be obtained in a finite
number of steps — however big that number might be. But there are
some calculations that involve recursion, and those might never termi-
nate.We can’t just ban non-terminating functions fromHaskell because
distinguishing between terminating and non-terminating functions is
undecidable — the famous halting problem.That’s why computer scien-
tists came up with a brilliant idea, or a major hack, depending on your
point of view, to extend every type by one more special value called the
bottom and denoted by _|_, or Unicode ⊥. This “value” corresponds to
a non-terminating computation. So a function declared as:

f :: Bool -> Bool

may return True, False, or _|_; the latter meaning that it would never
terminate.

Interestingly, once you accept the bottom as part of the type sys-
tem, it is convenient to treat every runtime error as a bottom, and even
allow functions to return the bottom explicitly. The latter is usually
done using the expression undefined, as in:

f :: Bool -> Bool

f x = undefined

This definition type checks because undefined evaluates to bottom,
which is a member of any type, including Bool. You can even write:

f :: Bool -> Bool

f = undefined
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(without the x) because the bottom is also a member of the type
Bool->Bool.

Functions that may return bottom are called partial, as opposed to
total functions, which return valid results for every possible argument.

Because of the bottom, you’ll see the category of Haskell types and
functions referred to as Hask rather than Set. From the theoretical point
of view, this is the source of never-ending complications, so at this
point I will use my butcher’s knife and terminate this line of reasoning.
From the pragmatic point of view, it’s okay to ignore non-terminating
functions and bottoms, and treat Hask as bona fide Set.1

2.4 Why Do We Need a Mathematical Model?

As a programmer you are intimately familiar with the syntax and gram-
mar of your programming language. These aspects of the language are
usually described using formal notation at the very beginning of the
language spec. But the meaning, or semantics, of the language is much
harder to describe; it takes many more pages, is rarely formal enough,
and almost never complete. Hence the never ending discussions among
language lawyers, and a whole cottage industry of books dedicated to
the exegesis of the finer points of language standards.

There are formal tools for describing the semantics of a language
but, because of their complexity, they are mostly used with simplified
academic languages, not real-life programming behemoths. One such
tool called operational semantics describes the mechanics of program
execution. It defines a formalized idealized interpreter.The semantics of

1Nils Anders Danielsson, John Hughes, Patrik Jansson, Jeremy Gibbons, Fast and
Loose Reasoning is Morally Correct. This paper provides justification for ignoring bot-
toms in most contexts.
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industrial languages, such as C++, is usually described using informal
operational reasoning, often in terms of an “abstract machine.”

The problem is that it’s very hard to prove things about programs
using operational semantics. To show a property of a program you es-
sentially have to “run it” through the idealized interpreter.

It doesn’t matter that programmers never perform formal proofs of
correctness.We always “think” that wewrite correct programs. Nobody
sits at the keyboard saying, “Oh, I’ll just throw a few lines of code and
seewhat happens.”We think that the codewewrite will perform certain
actions that will produce desired results. We are usually quite surprised
when it doesn’t. That means we do reason about programs we write,
and we usually do it by running an interpreter in our heads. It’s just
really hard to keep track of all the variables. Computers are good at
running programs — humans are not! If we were, we wouldn’t need
computers.

But there is an alternative. It’s called denotational semantics and it’s
based on math. In denotational semantics every programing construct
is given its mathematical interpretation.With that, if you want to prove
a property of a program, you just prove a mathematical theorem. You
might think that theorem proving is hard, but the fact is that we hu-
mans have been building up mathematical methods for thousands of
years, so there is a wealth of accumulated knowledge to tap into. Also,
as compared to the kind of theorems that professional mathematicians
prove, the problems that we encounter in programming are usually
quite simple, if not trivial.

Consider the definition of a factorial function in Haskell, which is
a language quite amenable to denotational semantics:

fact n = product [1..n]
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The expression [1..n] is a list of integers from 1 to n. The function
product multiplies all elements of a list. That’s just like a definition of
factorial taken from a math text. Compare this with C:

int fact(int n) {

int i;

int result = 1;

for (i = 2; i <= n; ++i)

result *= i;

return result;

}

Need I say more?
Okay, I’ll be the first to admit that this was a cheap shot! A facto-

rial function has an obvious mathematical denotation. An astute reader
might ask:What’s the mathematical model for reading a character from
the keyboard or sending a packet across the network? For the longest
time that would have been an awkward question leading to a rather
convoluted explanation. It seemed like denotational semantics wasn’t
the best fit for a considerable number of important tasks that were
essential for writing useful programs, and which could be easily tack-
led by operational semantics. The breakthrough came from category
theory. Eugenio Moggi discovered that computational effect can be
mapped to monads. This turned out to be an important observation
that not only gave denotational semantics a new lease on life and made
pure functional programs more usable, but also shed new light on tra-
ditional programming. I’ll talk about monads later, when we develop
more categorical tools.

One of the important advantages of having a mathematical model
for programming is that it’s possible to perform formal proofs of cor-
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rectness of software. This might not seem so important when you’re
writing consumer software, but there are areas of programming where
the price of failure may be exorbitant, or where human life is at stake.
But evenwhenwriting web applications for the health system, youmay
appreciate the thought that functions and algorithms from the Haskell
standard library come with proofs of correctness.

2.5 Pure and Dirty Functions

The things we call functions in C++ or any other imperative language,
are not the same things mathematicians call functions. A mathematical
function is just a mapping of values to values.

We can implement a mathematical function in a programming lan-
guage: Such a function, given an input value will calculate the output
value. A function to produce a square of a number will probably multi-
ply the input value by itself. It will do it every time it’s called, and it’s
guaranteed to produce the same output every time it’s called with the
same input. The square of a number doesn’t change with the phases of
the Moon.

Also, calculating the square of a number should not have a side
effect of dispensing a tasty treat for your dog. A “function” that does
that cannot be easily modelled as a mathematical function.

In programming languages, functions that always produce the same
result given the same input and have no side effects are called pure func-
tions. In a pure functional language like Haskell all functions are pure.
Because of that, it’s easier to give these languages denotational seman-
tics and model them using category theory. As for other languages, it’s
always possible to restrict yourself to a pure subset, or reason about side
effects separately. Later we’ll see how monads let us model all kinds of
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effects using only pure functions. So we really don’t lose anything by
restricting ourselves to mathematical functions.

2.6 Examples of Types

Once you realize that types are sets, you can think of some rather exotic
types. For instance, what’s the type corresponding to an empty set? No,
it’s not C++ void, although this type is called Void in Haskell. It’s a type
that’s not inhabited by any values. You can define a function that takes
Void, but you can never call it. To call it, you would have to provide
a value of the type Void, and there just aren’t any. As for what this
function can return, there are no restrictions whatsoever. It can return
any type (although it never will, because it can’t be called). In other
words it’s a function that’s polymorphic in the return type. Haskellers
have a name for it:

absurd :: Void -> a

(Remember, a is a type variable that can stand for any type.)The name is
not coincidental. There is deeper interpretation of types and functions
in terms of logic called the Curry-Howard isomorphism. The type Void
represents falsity, and the type of the function absurd corresponds to
the statement that from falsity follows anything, as in the Latin adage
“ex falso sequitur quodlibet.”

Next is the type that corresponds to a singleton set. It’s a type that
has only one possible value. This value just “is.” You might not immedi-
ately recognise it as such, but that is the C++ void. Think of functions
from and to this type. A function from void can always be called. If
it’s a pure function, it will always return the same result. Here’s an
example of such a function:
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int f44() { return 44; }

You might think of this function as taking “nothing”, but as we’ve just
seen, a function that takes “nothing” can never be called because there
is no value representing “nothing.” So what does this function take?
Conceptually, it takes a dummy value of which there is only one in-
stance ever, so we don’t have to mention it explicitly. In Haskell, how-
ever, there is a symbol for this value: an empty pair of parentheses, ().
So, by a funny coincidence (or is it a coincidence?), the call to a func-
tion of void looks the same in C++ and in Haskell. Also, because of the
Haskell’s love of terseness, the same symbol () is used for the type,
the constructor, and the only value corresponding to a singleton set.
So here’s this function in Haskell:

f44 :: () -> Integer

f44 () = 44

The first line declares that f44 takes the type (), pronounced “unit,”
into the type Integer. The second line defines f44 by pattern matching
the only constructor for unit, namely (), and producing the number 44.
You call this function by providing the unit value ():

f44 ()

Notice that every function of unit is equivalent to picking a single el-
ement from the target type (here, picking the Integer 44). In fact you
could think of f44 as a different representation for the number 44. This
is an example of how we can replace explicit mention of elements of
a set by talking about functions (arrows) instead. Functions from unit
to any type A are in one-to-one correspondence with the elements of
that set A.
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What about functions with the void return type, or, in Haskell, with
the unit return type? In C++ such functions are used for side effects, but
we know that these are not real functions in the mathematical sense of
the word. A pure function that returns unit does nothing: it discards its
argument.

Mathematically, a function from a set A to a singleton set maps
every element of A to the single element of that singleton set. For every
A there is exactly one such function. Here’s this function for Integer:

fInt :: Integer -> ()

fInt x = ()

You give it any integer, and it gives you back a unit. In the spirit of
terseness, Haskell lets you use the wildcard pattern, the underscore,
for an argument that is discarded. This way you don’t have to invent a
name for it. So the above can be rewritten as:

fInt :: Integer -> ()

fInt _ = ()

Notice that the implementation of this function not only doesn’t de-
pend on the value passed to it, but it doesn’t even depend on the type
of the argument.

Functions that can be implemented with the same formula for any
type are called parametrically polymorphic. You can implement awhole
family of such functions with one equation using a type parameter in-
stead of a concrete type. What should we call a polymorphic function
from any type to unit type? Of course we’ll call it unit:

unit :: a -> ()

unit _ = ()
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In C++ you would write this function as:

template<class T>

void unit(T) {}

Next in the typology of types is a two-element set. In C++ it’s called
bool and in Haskell, predictably, Bool. The difference is that in C++
bool is a built-in type, whereas in Haskell it can be defined as follows:

data Bool = True | False

(The way to read this definition is that Bool is either True or False.) In
principle, one should also be able to define a Boolean type in C++ as
an enumeration:

enum bool {

true,

false

};

but C++ enum is secretly an integer. The C++11 “enum class” could
have been used instead, but then you would have to qualify its values
with the class name, as in bool::true and bool::false, not to mention
having to include the appropriate header in every file that uses it.

Pure functions from Bool just pick two values from the target type,
one corresponding to True and another to False.

Functions to Bool are called predicates. For instance, the Haskell li-
brary Data.Char is full of predicates like isAlpha or isDigit. In C++
there is a similar library that defines, among others, isalpha and isdigit,
but these return an int rather than a Boolean. The actual predicates
are defined in std::ctype and have the form ctype::is(alpha, c),
ctype::is(digit, c), etc.
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2.7 Challenges

1. Define a higher-order function (or a function object) memoize in
your favorite language. This function takes a pure function f as
an argument and returns a function that behaves almost exactly
like f, except that it only calls the original function once for every
argument, stores the result internally, and subsequently returns
this stored result every time it’s called with the same argument.
You can tell the memoized function from the original by watch-
ing its performance. For instance, try to memoize a function that
takes a long time to evaluate. You’ll have to wait for the result
the first time you call it, but on subsequent calls, with the same
argument, you should get the result immediately.

2. Try to memoize a function from your standard library that you
normally use to produce random numbers. Does it work?

3. Most random number generators can be initialized with a seed.
Implement a function that takes a seed, calls the random number
generator with that seed, and returns the result. Memoize that
function. Does it work?

4. Which of these C++ functions are pure? Try to memoize them
and observe what happens when you call them multiple times:
memoized and not.

(a) The factorial function from the example in the text.
(b) std::getchar()

(c) bool f() {

std::cout << "Hello!" << std::endl;

return true;

}

(d) int f(int x)
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{

static int y = 0;

y += x;

return y;

}

5. How many different functions are there from Bool to Bool? Can
you implement them all?

6. Draw a picture of a category whose only objects are the types
Void, () (unit), and Bool; with arrows corresponding to all pos-
sible functions between these types. Label the arrows with the
names of the functions.
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3
Categories Great and Small

You can get real appreciation for categories by studying a vari-
ety of examples. Categories come in all shapes and sizes and often

pop up in unexpected places. We’ll start with something really simple.

3.1 No Objects

The most trivial category is one with zero objects and, consequently,
zero morphisms. It’s a very sad category by itself, but it may be impor-
tant in the context of other categories, for instance, in the category of
all categories (yes, there is one). If you think that an empty set makes
sense, then why not an empty category?
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3.2 Simple Graphs

You can build categories just by connecting objects with arrows. You
can imagine starting with any directed graph and making it into a cat-
egory by simply adding more arrows. First, add an identity arrow at
each node. Then, for any two arrows such that the end of one coincides
with the beginning of the other (in other words, any two composable
arrows), add a new arrow to serve as their composition. Every time you
add a new arrow, you have to also consider its composition with any
other arrow (except for the identity arrows) and itself. You usually end
up with infinitely many arrows, but that’s okay.

Another way of looking at this process is that you’re creating a
category, which has an object for every node in the graph, and all pos-
sible chains of composable graph edges as morphisms. (You may even
consider identity morphisms as special cases of chains of length zero.)

Such a category is called a free category generated by a given graph.
It’s an example of a free construction, a process of completing a given
structure by extending it with a minimum number of items to satisfy
its laws (here, the laws of a category). We’ll see more examples of it in
the future.

3.3 Orders

And now for something completely different! A category where a mor-
phism is a relation between objects: the relation of being less than or
equal. Let’s check if it indeed is a category. Do we have identity mor-
phisms? Every object is less than or equal to itself: check! Do we have
composition? If a <= b and b <= c then a <= c: check! Is composition
associative? Check! A set with a relation like this is called a preorder,
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so a preorder is indeed a category.
You can also have a stronger relation, that satisfies an additional

condition that, if a <= b and b <= a then a must be the same as b.
That’s called a partial order.

Finally, you can impose the condition that any two objects are in
a relation with each other, one way or another; and that gives you a
linear order or total order.

Let’s characterize these ordered sets as categories. A preorder is a
category where there is at most one morphism going from any object a
to any object b. Another name for such a category is “thin.” A preorder
is a thin category.

A set of morphisms from object a to object b in a category C is called
a hom-set and is written as C(a, b) (or, sometimes, HomC(a, b)). So
every hom-set in a preorder is either empty or a singleton.That includes
the hom-set C(a, a), the set of morphisms from a to a, which must be
a singleton, containing only the identity, in any preorder. You may,
however, have cycles in a preorder. Cycles are forbidden in a partial
order.

It’s very important to be able to recognize preorders, partial or-
ders, and total orders because of sorting. Sorting algorithms, such as
quicksort, bubble sort, merge sort, etc., can only work correctly on to-
tal orders. Partial orders can be sorted using topological sort.

3.4 Monoid as Set

Monoid is an embarrassingly simple but amazingly powerful concept.
It’s the concept behind basic arithmetics: Both addition and multipli-
cation form a monoid. Monoids are ubiquitous in programming. They
show up as strings, lists, foldable data structures, futures in concurrent
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programming, events in functional reactive programming, and so on.
Traditionally, a monoid is defined as a set with a binary operation.

All that’s required from this operation is that it’s associative, and that
there is one special element that behaves like a unit with respect to it.

For instance, natural numbers with zero form a monoid under ad-
dition. Associativity means that:

(a + b) + c = a + (b + c)

(In other words, we can skip parentheses when adding numbers.)
The neutral element is zero, because:

0 + a = a

and

a + 0 = a

The second equation is redundant, because addition is commutative
(a + b = b + a), but commutativity is not part of the definition of a
monoid. For instance, string concatenation is not commutative and yet
it forms a monoid. The neutral element for string concatenation, by the
way, is an empty string, which can be attached to either side of a string
without changing it.

In Haskell we can define a type class for monoids — a type for which
there is a neutral element called mempty and a binary operation called
mappend:

class Monoid m where

mempty :: m

mappend :: m -> m -> m
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The type signature for a two-argument function, m->m->m, might look
strange at first, but it will make perfect sense after we talk about cur-
rying. You may interpret a signature with multiple arrows in two basic
ways: as a function of multiple arguments, with the rightmost type be-
ing the return type; or as a function of one argument (the leftmost one),
returning a function. The latter interpretation may be emphasized by
adding parentheses (which are redundant, because the arrow is right-
associative), as in: m->(m->m). We’ll come back to this interpretation in
a moment.

Notice that, in Haskell, there is no way to express the monoidal
properties of mempty and mappend (i.e., the fact that mempty is neutral
and that mappend is associative). It’s the responsibility of the program-
mer to make sure they are satisfied.

Haskell classes are not as intrusive as C++ classes. When you’re
defining a new type, you don’t have to specify its class up front. You
are free to procrastinate and declare a given type to be an instance
of some class much later. As an example, let’s declare String to be a
monoid by providing the implementation of mempty and mappend (this
is, in fact, done for you in the standard Prelude):

instance Monoid String where

mempty = ""

mappend = (++)

Here, we have reused the list concatenation operator (++), because a
String is just a list of characters.

A word about Haskell syntax: Any infix operator can be turned into
a two-argument function by surrounding it with parentheses. Given
two strings, you can concatenate them by inserting ++ between them:

"Hello " ++ "world!"

31



or by passing them as two arguments to the parenthesized (++):

(++) "Hello " "world!"

Notice that arguments to a function are not separated by commas or
surrounded by parentheses. (This is probably the hardest thing to get
used to when learning Haskell.)

It’s worth emphasizing that Haskell lets you express equality of
functions, as in:

mappend = (++)

Conceptually, this is different than expressing the equality of values
produced by functions, as in:

mappend s1 s2 = (++) s1 s2

The former translates into equality of morphisms in the category Hask
(or Set, if we ignore bottoms, which is the name for never-ending cal-
culations). Such equations are not only more succinct, but can often be
generalized to other categories. The latter is called extensional equality,
and states the fact that for any two input strings, the outputs of mappend
and (++) are the same. Since the values of arguments are sometimes
called points (as in: the value of f at point x), this is called point-wise
equality. Function equality without specifying the arguments is de-
scribed as point-free. (Incidentally, point-free equations often involve
composition of functions, which is symbolized by a point, so this might
be a little confusing to the beginner.)

The closest one can get to declaring a monoid in C++ would be to
use the (proposed) syntax for concepts.
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template<class T>

T mempty = delete;

template<class T>

T mappend(T, T) = delete;

template<class M>

concept bool Monoid = requires (M m) {

{ mempty<M> } -> M;

{ mappend(m, m); } -> M;

};

The first definition uses a value template (also proposed). A polymor-
phic value is a family of values — a different value for every type.

The keyword delete means that there is no default value defined:
It will have to be specified on a case-by-case basis. Similarly, there is
no default for mappend.

The concept Monoid is a predicate (hence the bool type) that tests
whether there exist appropriate definitions of mempty and mappend for
a given type M.

An instantiation of the Monoid concept can be accomplished by
providing appropriate specializations and overloads:

template<>

std::string mempty<std::string> = {""};

std::string mappend(std::string s1, std::string s2) {

return s1 + s2;

}
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3.5 Monoid as Category

That was the “familiar” definition of the monoid in terms of elements
of a set. But as you know, in category theory we try to get away from
sets and their elements, and instead talk about objects and morphisms.
So let’s change our perspective a bit and think of the application of the
binary operator as “moving” or “shifting” things around the set.

For instance, there is the operation of adding 5 to every natural
number. It maps 0 to 5, 1 to 6, 2 to 7, and so on. That’s a function
defined on the set of natural numbers. That’s good: we have a function
and a set. In general, for any number n there is a function of adding n
— the “adder” of n.

How do adders compose?The composition of the function that adds
5 with the function that adds 7 is a function that adds 12. So the compo-
sition of adders can be made equivalent to the rules of addition. That’s
good too: we can replace addition with function composition.

But wait, there’s more: There is also the adder for the neutral ele-
ment, zero. Adding zero doesn’t move things around, so it’s the identity
function in the set of natural numbers.

Instead of giving you the traditional rules of addition, I could as
well give you the rules of composing adders, without any loss of infor-
mation. Notice that the composition of adders is associative, because
the composition of functions is associative; and we have the zero adder
corresponding to the identity function.

An astute reader might have noticed that the mapping from inte-
gers to adders follows from the second interpretation of the type signa-
ture of mappend as m->(m->m). It tells us that mappend maps an element
of a monoid set to a function acting on that set.

Now Iwant you to forget that you are dealing with the set of natural
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numbers and just think of it as a single object, a blob with a bunch
of morphisms — the adders. A monoid is a single object category. In
fact the name monoid comes from Greek mono, which means single.
Every monoid can be described as a single object category with a set
of morphisms that follow appropriate rules of composition.

String concatenation is an interesting case, becausewe have a choice
of defining right appenders and left appenders (or prependers, if you
will). The composition tables of the two models are a mirror reverse of
each other. You can easily convince yourself that appending “bar” after
“foo” corresponds to prepending “foo” after prepending “bar”.

You might ask the question whether every categorical monoid — a
one-object category— defines a unique set-with-binary-operatormonoid.
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Monoid hom-set seen as morphisms and as points in a set.

It turns out that we can always extract a set from a single-object cat-
egory. This set is the set of morphisms — the adders in our example.
In other words, we have the hom-set M(m, m) of the single object m in
the category M. We can easily define a binary operator in this set: The
monoidal product of two set-elements is the element corresponding to
the composition of the corresponding morphisms. If you give me two
elements of M(m, m) corresponding to f and g, their product will corre-
spond to the composition g� f. The composition always exists, because
the source and the target for these morphisms are the same object. And
it’s associative by the rules of category. The identity morphism is the
neutral element of this product. So we can always recover a set monoid
from a category monoid. For all intents and purposes they are one and
the same.

There is just one little nit for mathematicians to pick: morphisms
don’t have to form a set. In the world of categories there are things
larger than sets. A category in which morphisms between any two ob-
jects form a set is called locally small. As promised, I will be mostly
ignoring such subtleties, but I thought I should mention them for the
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record.
A lot of interesting phenomena in category theory have their root

in the fact that elements of a hom-set can be seen both as morphisms,
which follow the rules of composition, and as points in a set. Here,
composition of morphisms in M translates into monoidal product in
the set M(m, m).

3.6 Challenges

1. Generate a free category from:

(a) A graph with one node and no edges
(b) A graph with one node and one (directed) edge (hint: this

edge can be composed with itself)
(c) A graph with two nodes and a single arrow between them
(d) A graph with a single node and 26 arrows marked with the

letters of the alphabet: a, b, c … z.

2. What kind of order is this?

(a) A set of sets with the inclusion relation: A is included in B
if every element of A is also an element of B.

(b) C++ types with the following subtyping relation: T1 is a
subtype of T2 if a pointer to T1 can be passed to a function
that expects a pointer to T2 without triggering a compila-
tion error.

3. Considering that Bool is a set of two values True and False, show
that it forms two (set-theoretical) monoids with respect to, re-
spectively, operator && (AND) and || (OR).
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4. Represent the Bool monoid with the AND operator as a category:
List the morphisms and their rules of composition.

5. Represent addition modulo 3 as a monoid category.
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4
Kleisli Categories

You’ve seen how to model types and pure functions as a cate-
gory. I also mentioned that there is a way to model side effects, or

non-pure functions, in category theory. Let’s have a look at one such
example: functions that log or trace their execution. Something that,
in an imperative language, would likely be implemented by mutating
some global state, as in:

string logger;

bool negate(bool b) {

logger += "Not so! ";

return !b;

}

You know that this is not a pure function, because its memoized version
would fail to produce a log. This function has side effects.
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In modern programming, we try to stay away from global mutable
state as much as possible — if only because of the complications of
concurrency. And you would never put code like this in a library.

Fortunately for us, it’s possible to make this function pure. You just
have to pass the log explicitly, in and out. Let’s do that by adding a
string argument, and pairing regular output with a string that contains
the updated log:

pair<bool, string> negate(bool b, string logger) {

return make_pair(!b, logger + "Not so! ");

}

This function is pure, it has no side effects, it returns the same pair
every time it’s called with the same arguments, and it can be memoized
if necessary. However, considering the cumulative nature of the log,
you’d have to memoize all possible histories that can lead to a given
call. There would be a separate memo entry for:

negate(true, "It was the best of times. ");

and

negate(true, "It was the worst of times. ");

and so on.
It’s also not a very good interface for a library function. The callers

are free to ignore the string in the return type, so that’s not a huge
burden; but they are forced to pass a string as input, which might be
inconvenient.

Is there a way to do the same thing less intrusively? Is there a way
to separate concerns? In this simple example, the main purpose of the
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function negate is to turn one Boolean into another. The logging is sec-
ondary. Granted, the message that is logged is specific to the function,
but the task of aggregating the messages into one continuous log is a
separate concern. We still want the function to produce a string, but
we’d like to unburden it from producing a log. So here’s the compro-
mise solution:

pair<bool, string> negate(bool b) {

return make_pair(!b, "Not so! ");

}

The idea is that the log will be aggregated between function calls.
To see how this can be done, let’s switch to a slightly more realistic

example. We have one function from string to string that turns lower
case characters to upper case:

string toUpper(string s) {

string result;

int (*toupperp)(int) = &toupper; // toupper is overloaded

transform(begin(s), end(s), back_inserter(result), toupperp);

return result;

}

and another that splits a string into a vector of strings, breaking it on
whitespace boundaries:

vector<string> toWords(string s) {

return words(s);

}

The actual work is done in the auxiliary function words:
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vector<string> words(string s) {

vector<string> result{""};

for (auto i = begin(s); i != end(s); ++i)

{

if (isspace(*i))

result.push_back("");

else

result.back() += *i;

}

return result;

}

We want to modify the functions
toUpper and toWords so that they
piggyback a message string on top of
their regular return values.

We will “embellish” the return
values of these functions. Let’s do it
in a generic way by defining a tem-
plate Writer that encapsulates a pair
whose first component is a value of
arbitrary type A and the second com-
ponent is a string:

template<class A>

using Writer = pair<A, string>;

Here are the embellished functions:

Writer<string> toUpper(string s) {
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string result;

int (*toupperp)(int) = &toupper;

transform(begin(s), end(s), back_inserter(result), toupperp);

return make_pair(result, "toUpper ");

}

Writer<vector<string>> toWords(string s) {

return make_pair(words(s), "toWords ");

}

We want to compose these two functions into another embellished
function that uppercases a string and splits it into words, all the while
producing a log of those actions. Here’s how we may do it:

Writer<vector<string>> process(string s) {

auto p1 = toUpper(s);

auto p2 = toWords(p1.first);

return make_pair(p2.first, p1.second + p2.second);

}

We have accomplished our goal: The aggregation of the log is no longer
the concern of the individual functions. They produce their own mes-
sages, which are then, externally, concatenated into a larger log.

Now imagine a whole programwritten in this style. It’s a nightmare
of repetitive, error-prone code. But we are programmers.We know how
to deal with repetitive code: we abstract it! This is, however, not your
run of the mill abstraction — we have to abstract function composition
itself. But composition is the essence of category theory, so before we
write more code, let’s analyze the problem from the categorical point
of view.
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4.1 The Writer Category

The idea of embellishing the return types of a bunch of functions in
order to piggyback some additional functionality turns out to be very
fruitful. We’ll see many more examples of it. The starting point is our
regular category of types and functions.We’ll leave the types as objects,
but redefine our morphisms to be the embellished functions.

For instance, suppose that wewant to embellish the function isEven

that goes from int to bool. We turn it into a morphism that is repre-
sented by an embellished function.The important point is that this mor-
phism is still considered an arrow between the objects int and bool,
even though the embellished function returns a pair:

pair<bool, string> isEven(int n) {

return make_pair(n % 2 == 0, "isEven ");

}

By the laws of a category, we should be able to compose this morphism
with another morphism that goes from the object bool to whatever. In
particular, we should be able to compose it with our earlier negate:

pair<bool, string> negate(bool b) {

return make_pair(!b, "Not so! ");

}

Obviously, we cannot compose these two morphisms the same way
we compose regular functions, because of the input/output mismatch.
Their composition should look more like this:

pair<bool, string> isOdd(int n) {

pair<bool, string> p1 = isEven(n);
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pair<bool, string> p2 = negate(p1.first);

return make_pair(p2.first, p1.second + p2.second);

}

So here’s the recipe for the composition of two morphisms in this new
category we are constructing:

1. Execute the embellished function corresponding to the first mor-
phism

2. Extract the first component of the result pair and pass it to the
embellished function corresponding to the second morphism

3. Concatenate the second component (the string) of of the first
result and the second component (the string) of the second result

4. Return a new pair combining the first component of the final
result with the concatenated string.

If we want to abstract this composition as a higher order function
in C++, we have to use a template parameterized by three types cor-
responding to three objects in our category. It should take two embel-
lished functions that are composable according to our rules, and return
a third embellished function:

template<class A, class B, class C>

function<Writer<C>(A)> compose(function<Writer<B>(A)> m1,

function<Writer<C>(B)> m2)

{

return [m1, m2](A x) {

auto p1 = m1(x);

auto p2 = m2(p1.first);

return make_pair(p2.first, p1.second + p2.second);
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};

}

Now we can go back to our earlier example and implement the com-
position of toUpper and toWords using this new template:

Writer<vector<string>> process(string s) {

return compose<string, string, vector<string>>(toUpper,

toWords)(s);↪

}

There is still a lot of noise with the passing of types to the compose

template. This can be avoided as long as you have a C++14-compliant
compiler that supports generalized lambda functions with return type
deduction (credit for this code goes to Eric Niebler):

auto const compose = [](auto m1, auto m2) {

return [m1, m2](auto x) {

auto p1 = m1(x);

auto p2 = m2(p1.first);

return make_pair(p2.first, p1.second + p2.second);

};

};

In this new definition, the implementation of process simplifies to:

Writer<vector<string>> process(string s) {

return compose(toUpper, toWords)(s);

}
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But we are not finished yet. We have defined composition in our new
category, but what are the identity morphisms? These are not our reg-
ular identity functions! They have to be morphisms from type A back
to type A, which means they are embellished functions of the form:

Writer<A> identity(A);

They have to behave like units with respect to composition. If you look
at our definition of composition, you’ll see that an identity morphism
should pass its argument without change, and only contribute an empty
string to the log:

template<class A> Writer<A> identity(A x) {

return make_pair(x, "");

}

You can easily convince yourself that the category we have just de-
fined is indeed a legitimate category. In particular, our composition is
trivially associative. If you follow what’s happening with the first com-
ponent of each pair, it’s just a regular function composition, which is
associative. The second components are being concatenated, and con-
catenation is also associative.

An astute reader may notice that it would be easy to generalize this
construction to any monoid, not just the string monoid. We would use
mappend inside compose and mempty inside identity (in place of + and
""). There really is no reason to limit ourselves to logging just strings.
A good library writer should be able to identify the bare minimum of
constraints that make the library work — here the logging library’s
only requirement is that the log have monoidal properties.
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4.2 Writer in Haskell

The same thing in Haskell is a little more terse, and we also get a lot
more help from the compiler. Let’s start by defining the Writer type:

type Writer a = (a, String)

Here I’m just defining a type alias, an equivalent of a typedef (or using)
in C++. The type Writer is parameterized by a type variable a and is
equivalent to a pair of a and String. The syntax for pairs is minimal:
just two items in parentheses, separated by a comma.

Ourmorphisms are functions from an arbitrary type to some Writer
type:

a -> Writer b

We’ll declare the composition as a funny infix operator, sometimes
called the “fish”:

(>=>) :: (a -> Writer b) -> (b -> Writer c) -> (a -> Writer c)

It’s a function of two arguments, each being a function on its own, and
returning a function. The first argument is of the type (a->Writer b),
the second is (b->Writer c), and the result is (a->Writer c).

Here’s the definition of this infix operator — the two arguments m1
and m2 appearing on either side of the fishy symbol:

m1 >=> m2 = \x ->

let (y, s1) = m1 x

(z, s2) = m2 y

in (z, s1 ++ s2)
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The result is a lambda function of one argument x.The lambda is written
as a backslash — think of it as the Greek letter λ with an amputated leg.

The let expression lets you declare auxiliary variables. Here the
result of the call to m1 is pattern matched to a pair of variables (y,

s1); and the result of the call to m2, with the argument y from the first
pattern, is matched to (z, s2).

It is common in Haskell to pattern match pairs, rather than use
accessors, as we did in C++. Other than that there is a pretty straight-
forward correspondence between the two implementations.

The overall value of the let expression is specified in its in clause:
here it’s a pair whose first component is z and the second component
is the concatenation of two strings, s1++s2.

I will also define the identity morphism for our category, but for
reasons that will become clear much later, I will call it return.

return :: a -> Writer a

return x = (x, "")

For completeness, let’s have the Haskell versions of the embellished
functions upCase and toWords:

upCase :: String -> Writer String

upCase s = (map toUpper s, "upCase ")

toWords :: String -> Writer [String]

toWords s = (words s, "toWords ")

The function map corresponds to the C++ transform. It applies the char-
acter function toUpper to the string s. The auxiliary function words is
defined in the standard Prelude library.

Finally, the composition of the two functions is accomplished with
the help of the fish operator:
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process :: String -> Writer [String]

process = upCase >=> toWords

4.3 Kleisli Categories

You might have guessed that I haven’t invented this category on the
spot. It’s an example of the so called Kleisli category — a category based
on a monad. We are not ready to discuss monads yet, but I wanted to
give you a taste of what they can do. For our limited purposes, a Kleisli
category has, as objects, the types of the underlying programming lan-
guage. Morphisms from type A to type B are functions that go from
A to a type derived from B using the particular embellishment. Each
Kleisli category defines its own way of composing such morphisms, as
well as the identity morphisms with respect to that composition. (Later
we’ll see that the imprecise term “embellishment” corresponds to the
notion of an endofunctor in a category.)

The particular monad that I used as the basis of the category in this
post is called the writer monad and it’s used for logging or tracing the
execution of functions. It’s also an example of a more general mecha-
nism for embedding effects in pure computations. You’ve seen previ-
ously that we could model programming-language types and functions
in the category of sets (disregarding bottoms, as usual). Here we have
extended this model to a slightly different category, a category where
morphisms are represented by embellished functions, and their com-
position does more than just pass the output of one function to the
input of another. We have one more degree of freedom to play with:
the composition itself. It turns out that this is exactly the degree of free-
dom which makes it possible to give simple denotational semantics to
programs that in imperative languages are traditionally implemented
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using side effects.

4.4 Challenge

A function that is not defined for all possible values of its argument is
called a partial function. It’s not really a function in the mathematical
sense, so it doesn’t fit the standard categorical mold. It can, however, be
represented by a function that returns an embellished type optional:

template<class A> class optional {

bool _isValid;

A _value;

public:

optional() : _isValid(false) {}

optional(A v) : _isValid(true), _value(v) {}

bool isValid() const { return _isValid; }

A value() const { return _value; }

};

As an example, here’s the implementation of the embellished function
safe_root:

optional<double> safe_root(double x) {

if (x >= 0) return optional<double>{sqrt(x)};

else return optional<double>{};

}

Here’s the challenge:

1. Construct the Kleisli category for partial functions (define com-
position and identity).
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2. Implement the embellished function safe_reciprocal that re-
turns a valid reciprocal of its argument, if it’s different from zero.

3. Compose safe_root and safe_reciprocal to implement
safe_root_reciprocal that calculates sqrt(1/x)whenever pos-
sible.
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5
Products and Coproducts

The Ancient Greek playwright Euripides once said: “Every man
is like the company he is wont to keep.” We are defined by our

relationships. Nowhere is this more true than in category theory. If we
want to single out a particular object in a category, we can only do this
by describing its pattern of relationships with other objects (and itself).
These relationships are defined by morphisms.

There is a common construction in category theory called the uni-
versal construction for defining objects in terms of their relationships.
One way of doing this is to pick a pattern, a particular shape con-
structed from objects and morphisms, and look for all its occurrences
in the category. If it’s a common enough pattern, and the category is
large, chances are you’ll have lots and lots of hits. The trick is to es-
tablish some kind of ranking among those hits, and pick what could be
considered the best fit.

This process is reminiscent of the way we do web searches. A query
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is like a pattern. A very general query will give you large recall: lots of
hits. Some may be relevant, others not. To eliminate irrelevant hits, you
refine your query.That increases its precision. Finally, the search engine
will rank the hits and, hopefully, the one result that you’re interested
in will be at the top of the list.

5.1 Initial Object

The simplest shape is a single object. Obviously, there are as many in-
stances of this shape as there are objects in a given category. That’s
a lot to choose from. We need to establish some kind of ranking and
try to find the object that tops this hierarchy. The only means at our
disposal are morphisms. If you think of morphisms as arrows, then it’s
possible that there is an overall net flow of arrows from one end of the
category to another. This is true in ordered categories, for instance in
partial orders. We could generalize that notion of object precedence by
saying that object a is “more initial” than object b if there is an arrow
(a morphism) going from a to b. We would then define the initial object
as one that has arrows going to all other objects. Obviously there is no
guarantee that such an object exists, and that’s okay. A bigger problem
is that there may be too many such objects: The recall is good, but pre-
cision is lacking. The solution is to take a hint from ordered categories
— they allow at most one arrow between any two objects: there is only
one way of being less-than or equal-to another object. Which leads us
to this definition of the initial object:

The initial object is the object that has one and only one
morphism going to any object in the category.
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However, even that doesn’t guarantee the uniqueness of the initial ob-
ject (if one exists). But it guarantees the next best thing: uniqueness up
to isomorphism. Isomorphisms are very important in category theory,
so I’ll talk about them shortly. For now, let’s just agree that unique-
ness up to isomorphism justifies the use of “the” in the definition of
the initial object.

Here are some examples: The initial object in a partially ordered
set (often called a poset) is its least element. Some posets don’t have an
initial object — like the set of all integers, positive and negative, with
less-than-or-equal relation for morphisms.

In the category of sets and functions, the initial object is the empty
set. Remember, an empty set corresponds to the Haskell type Void

(there is no corresponding type in C++) and the unique polymorphic
function from Void to any other type is called absurd:

absurd :: Void -> a

55



It’s this family of morphisms that makes Void the initial object in the
category of types.

5.2 Terminal Object

Let’s continue with the single-object pattern, but let’s change the way
we rank the objects. We’ll say that object a is “more terminal” than
object b if there is a morphism going from b to a (notice the reversal
of direction). We’ll be looking for an object that’s more terminal than
any other object in the category. Again, we will insist on uniqueness:

The terminal object is the object with one and only onemor-
phism coming to it from any object in the category.

And again, the terminal object is unique, up to isomorphism, which
I will show shortly. But first let’s look at some examples. In a poset,
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the terminal object, if it exists, is the biggest object. In the category
of sets, the terminal object is a singleton. We’ve already talked about
singletons — they correspond to the void type in C++ and the unit type
() in Haskell. It’s a type that has only one value — implicit in C++ and
explicit in Haskell, denoted by (). We’ve also established that there is
one and only one pure function from any type to the unit type:

unit :: a -> ()

unit _ = ()

so all the conditions for the terminal object are satisfied.
Notice that in this example the uniqueness condition is crucial, be-

cause there are other sets (actually, all of them, except for the empty
set) that have incoming morphisms from every set. For instance, there
is a Boolean-valued function (a predicate) defined for every type:

yes :: a -> Bool

yes _ = True

But Bool is not a terminal object.There is at least one more Bool-valued
function from every type:

no :: a -> Bool

no _ = False

Insisting on uniqueness gives us just the right precision to narrow
down the definition of the terminal object to just one type.

5.3 Duality

You can’t help but to notice the symmetry between the way we defined
the initial object and the terminal object. The only difference between
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the two was the direction of morphisms. It turns out that for any cate-
gory C we can define the opposite category Cop just by reversing all the
arrows. The opposite category automatically satisfies all the require-
ments of a category, as long as we simultaneously redefine composi-
tion. If original morphisms f::a->b and g::b->c composed to h::a->c

with h=g◦f, then the reversed morphisms fop::b->a and gop::c->bwill
compose to hop::c->a with hop=fop◦gop. And reversing the identity ar-
rows is a (pun alert!) no-op.

Duality is a very important property of categories because it dou-
bles the productivity of every mathematician working in category the-
ory. For every construction you come up with, there is its opposite; and
for every theorem you prove, you get one for free. The constructions in
the opposite category are often prefixed with “co”, so you have prod-
ucts and coproducts, monads and comonads, cones and cocones, limits
and colimits, and so on. There are no cocomonads though, because re-
versing the arrows twice gets us back to the original state.

It follows then that a terminal object is the initial object in the op-
posite category.

5.4 Isomorphisms

As programmers, we are well aware that defining equality is a non-
trivial task. What does it mean for two objects to be equal? Do they
have to occupy the same location in memory (pointer equality)? Or is
it enough that the values of all their components are equal? Are two
complex numbers equal if one is expressed as the real and imaginary
part, and the other as modulus and angle? You’d think that mathe-
maticians would have figured out the meaning of equality, but they
haven’t. They have the same problem of multiple competing defini-
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tions for equality.There is the propositional equality, intensional equal-
ity, extensional equality, and equality as a path in homotopy type the-
ory. And then there are the weaker notions of isomorphism, and even
weaker of equivalence.

The intuition is that isomorphic objects look the same — they have
the same shape. It means that every part of one object corresponds to
some part of another object in a one-to-one mapping. As far as our
instruments can tell, the two objects are a perfect copy of each other.
Mathematically it means that there is a mapping from object a to object
b, and there is a mapping from object b back to object a, and they are
the inverse of each other. In category theory we replace mappings with
morphisms. An isomorphism is an invertible morphism; or a pair of
morphisms, one being the inverse of the other.

We understand the inverse in terms of composition and identity:
Morphism g is the inverse of morphism f if their composition is the
identity morphism. These are actually two equations because there are
two ways of composing two morphisms:

f . g = id

g . f = id

When I said that the initial (terminal) object was unique up to isomor-
phism, I meant that any two initial (terminal) objects are isomorphic.
That’s actually easy to see. Let’s suppose that we have two initial ob-
jects i1 and i2. Since i1 is initial, there is a unique morphism f from i1
to i2. By the same token, since i2 is initial, there is a unique morphism
g from i2 to i1. What’s the composition of these two morphisms?
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All morphisms in this diagram are unique.

The composition g∘f must be a morphism from i1 to i1. But i1 is initial
so there can only be one morphism going from i1 to i1. Since we are in
a category, we know that there is an identity morphism from i1 to i1,
and since there is room for only one, that must be it. Therefore g∘f is
equal to identity. Similarly, f∘g must be equal to identity, because there
can be only one morphism from i2 back to i2. This proves that f and g
must be the inverse of each other. Therefore any two initial objects are
isomorphic.

Notice that in this proof we used the uniqueness of the morphism
from the initial object to itself. Without that we couldn’t prove the “up
to isomorphism” part. But why do we need the uniqueness of f and
g? Because not only is the initial object unique up to isomorphism, it
is unique up to unique isomorphism. In principle, there could be more
than one isomorphism between two objects, but that’s not the case
here. This “uniqueness up to unique isomorphism” is the important
property of all universal constructions.

5.5 Products

The next universal construction is that of a product. We know what a
cartesian product of two sets is: it’s a set of pairs. But what’s the pattern
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that connects the product set with its constituent sets? If we can figure
that out, we’ll be able to generalize it to other categories.

All we can say is that there are two functions, the projections, from
the product to each of the constituents. In Haskell, these two functions
are called fst and snd and they pick, respectively, the first and the
second component of a pair:

fst :: (a, b) -> a

fst (x, y) = x

snd :: (a, b) -> b

snd (x, y) = y

Here, the functions are defined by pattern matching their arguments:
the pattern that matches any pair is (x, y), and it extracts its compo-
nents into variables x and y.

These definitions can be simplified even further with the use of
wildcards:

fst (x, _) = x

snd (_, y) = y

In C++, we would use template functions, for instance:

template<class A, class B> A

fst(pair<A, B> const & p) {

return p.first;

}

Equipped with this seemingly very limited knowledge, let’s try to de-
fine a pattern of objects and morphisms in the category of sets that
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will lead us to the construction of a product of two sets, a and b. This
pattern consists of an object c and two morphisms p and q connecting
it to a and b, respectively:

p :: c -> a

q :: c -> b

All cs that fit this pattern will be considered candidates for the product.
There may be lots of them.

For instance, let’s pick, as our constituents, two Haskell types, Int and
Bool, and get a sampling of candidates for their product.

Here’s one: Int. Can Int be considered a candidate for the product
of Int and Bool? Yes, it can — and here are its projections:

p :: Int -> Int

p x = x
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q :: Int -> Bool

q _ = True

That’s pretty lame, but it matches the criteria.
Here’s another one: (Int, Int, Bool). It’s a tuple of three ele-

ments, or a triple. Here are two morphisms that make it a legitimate
candidate (we are using pattern matching on triples):

p :: (Int, Int, Bool) -> Int

p (x, _, _) = x

q :: (Int, Int, Bool) -> Bool

q (_, _, b) = b

You may have noticed that while our first candidate was too small — it
only covered the Int dimension of the product; the second was too big
— it spuriously duplicated the Int dimension.

But we haven’t explored yet the other part of the universal con-
struction: the ranking. We want to be able to compare two instances
of our pattern. We want to compare one candidate object c and its two
projections p and q with another candidate object c’ and its two pro-
jections p’ and q’. We would like to say that c is “better” than c’ if there
is a morphism m from c’ to c — but that’s too weak. We also want its
projections to be “better,” or “more universal,” than the projections of
c’. What it means is that the projections p’ and q’ can be reconstructed
from p and q using m:

p' = p . m

q' = q . m
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Another way of looking at these equation is that m factorizes p’ and q’.
Just pretend that these equations are in natural numbers, and the dot
is multiplication: m is a common factor shared by p’ and q’.

Just to build some intuitions, let me show you that the pair (Int,
Bool) with the two canonical projections, fst and snd is indeed better
than the two candidates I presented before.

The mapping m for the first candidate is:

m :: Int -> (Int, Bool)

m x = (x, True)

Indeed, the two projections, p and q can be reconstructed as:
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p x = fst (m x) = x

q x = snd (m x) = True

The m for the second example is similarly uniquely determined:

m (x, _, b) = (x, b)

We were able to show that (Int, Bool) is better than either of the two
candidates. Let’s see why the opposite is not true. Could we find some
m' that would help us reconstruct fst and snd from p and q?

fst = p . m'

snd = q . m'

In our first example, q always returned True and we know that there
are pairs whose second component is False. We can’t reconstruct snd
from q.

The second example is different: we retain enough information after
running either p or q, but there is more than one way to factorize fst

and snd. Because both p and q ignore the second component of the
triple, our m' can put anything in it. We can have:

m' (x, b) = (x, x, b)

or

m' (x, b) = (x, 42, b)

and so on.
Putting it all together, given any type cwith two projections p and q,

there is a unique m from c to the cartesian product (a, b) that factorizes
them. In fact, it just combines p and q into a pair.
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m :: c -> (a, b)

m x = (p x, q x)

That makes the cartesian product (a, b) our best match, which means
that this universal construction works in the category of sets. It picks
the product of any two sets.

Now let’s forget about sets and define a product of two objects
in any category using the same universal construction. Such product
doesn’t always exist, but when it does, it is unique up to a unique iso-
morphism.

A product of two objects a and b is the object c equipped
with two projections such that for any other object c’ equipped
with two projections there is a unique morphism m from
c’ to c that factorizes those projections.

A (higher order) function that produces the factorizing function m from
two candidates is sometimes called the factorizer. In our case, it would
be the function:

factorizer :: (c -> a) -> (c -> b) -> (c -> (a, b))

factorizer p q = \x -> (p x, q x)

5.6 Coproduct

Like every construction in category theory, the product has a dual,
which is called the coproduct. When we reverse the arrows in the prod-
uct pattern, we end up with an object c equipped with two injections, i
and j: morphisms from a and b to c.
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i :: a -> c

j :: b -> c

The ranking is also inverted: object c is “better” than object c’ that is
equipped with the injections i’ and j’ if there is a morphism m from c
to c’ that factorizes the injections:

i' = m . i

j' = m . j

The “best” such object, one with a unique morphism connecting it to
any other pattern, is called a coproduct and, if it exists, is unique up to
unique isomorphism.
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A coproduct of two objects a and b is the object c equipped
with two injections such that for any other object c’ equipped
with two injections there is a unique morphism m from c
to c’ that factorizes those injections.

In the category of sets, the coproduct is the disjoint union of two sets.
An element of the disjoint union of a and b is either an element of a or
an element of b. If the two sets overlap, the disjoint union contains two
copies of the common part. You can think of an element of a disjoint
union as being tagged with an identifier that specifies its origin.

For a programmer, it’s easier to understand a coproduct in terms
of types: it’s a tagged union of two types. C++ supports unions, but
they are not tagged. It means that in your program you have to some-
how keep track which member of the union is valid. To create a tagged
union, you have to define a tag — an enumeration — and combine it
with the union. For instance, a tagged union of an int and a
char const * could be implemented as:

struct Contact {

enum { isPhone, isEmail } tag;

union { int phoneNum; char const * emailAddr; };

};

The two injections can either be implemented as constructors or as
functions. For instance, here’s the first injection as a function PhoneNum:

Contact PhoneNum(int n) {

Contact c;

c.tag = isPhone;

c.phoneNum = n;
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return c;

}

It injects an integer into Contact.
A tagged union is also called a variant, and there is a very general

implementation of a variant in the boost library, boost::variant.
In Haskell, you can combine any data types into a tagged union by

separating data constructors with a vertical bar. The Contact example
translates into the declaration:

data Contact = PhoneNum Int | EmailAddr String

Here, PhoneNum and EmailAddr serve both as constructors (injections),
and as tags for pattern matching (more about this later). For instance,
this is how you would construct a contact using a phone number:

helpdesk :: Contact;

helpdesk = PhoneNum 2222222

Unlike the canonical implementation of the product that is built into
Haskell as the primitive pair, the canonical implementation of the co-
product is a data type called Either, which is defined in the standard
Prelude as:

Either a b = Left a | Right b

It is parameterized by two types, a and b and has two constructors:
Left that takes a value of type a, and Right that takes a value of type
b.

Just as we’ve defined the factorizer for a product, we can define one
for the coproduct. Given a candidate type c and two candidate injec-
tions i and j, the factorizer for Either produces the factoring function:
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factorizer :: (a -> c) -> (b -> c) -> Either a b -> c

factorizer i j (Left a) = i a

factorizer i j (Right b) = j b

5.7 Asymmetry

We’ve seen two set of dual definitions: The definition of a terminal
object can be obtained from the definition of the initial object by re-
versing the direction of arrows; in a similar way, the definition of the
coproduct can be obtained from that of the product. Yet in the cate-
gory of sets the initial object is very different from the final object, and
coproduct is very different from product. We’ll see later that product
behaves like multiplication, with the terminal object playing the role
of one; whereas coproduct behaves more like the sum, with the initial
object playing the role of zero. In particular, for finite sets, the size of
the product is the product of the sizes of individual sets, and the size of
the coproduct is the sum of the sizes.

This shows that the category of sets is not symmetric with respect
to the inversion of arrows.

Notice that while the empty set has a unique morphism to any set
(the absurd function), it has no morphisms coming back. The singleton
set has a unique morphism coming to it from any set, but it also has
outgoing morphisms to every set (except for the empty one). As we’ve
seen before, these outgoing morphisms from the terminal object play
a very important role of picking elements of other sets (the empty set
has no elements, so there’s nothing to pick).

It’s the relationship of the singleton set to the product that sets it
apart from the coproduct. Consider using the singleton set, represented
by the unit type (), as yet another — vastly inferior — candidate for the
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product pattern. Equip it with two projections p and q: functions from
the singleton to each of the constituent sets. Each selects a concrete
element from either set. Because the product is universal, there is also a
(unique) morphism m from our candidate, the singleton, to the product.
This morphism selects an element from the product set — it selects a
concrete pair. It also factorizes the two projections:

p = fst . m

q = snd . m

When acting on the singleton value (), the only element of the single-
ton set, these two equations become:

p () = fst (m ())

q () = snd (m ())

Since m () is the element of the product picked by m, these equations
tell use that the element picked by p from the first set, p (), is the
first component of the pair picked by m. Similarly, q () is equal to the
second component. This is in total agreement with our understanding
that elements of the product are pairs of elements from the constituent
sets.

There is no such simple interpretation of the coproduct. We could
try the singleton set as a candidate for a coproduct, in an attempt to
extract the elements from it, but there we would have two injections
going into it rather than two projections coming out of it. They’d tell
us nothing about their sources (in fact, we’ve seen that they ignore
the input parameter). Neither would the unique morphism from the
coproduct to our singleton.The category of sets just looks very different
when seen from the direction of the initial object than it does when seen
from the terminal end.
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This is not an intrinsic property of sets, it’s a property of functions,
which we use as morphisms in Set. Functions are, in general, asymmet-
ric. Let me explain.

A function must be defined for every element of its domain set (in
programming, we call it a total function), but it doesn’t have to cover
the whole codomain. We’ve seen some extreme cases of it: functions
from a singleton set — functions that select just a single element in
the codomain. (Actually, functions from an empty set are the real ex-
tremes.) When the size of the domain is much smaller than the size of
the codomain, we often think of such functions as embedding the do-
main in the codomain. For instance, we can think of a function from
a singleton set as embedding its single element in the codomain. I call
them embedding functions, but mathematicians prefer to give a name
to the opposite: functions that tightly fill their codomains are called
surjective or onto.

The other source of asymmetry is that functions are allowed to map
many elements of the domain set into one element of the codomain.
They can collapse them.The extreme case are functions that map whole
sets into a singleton. You’ve seen the polymorphic unit function that
does just that. The collapsing can only be compounded by composi-
tion. A composition of two collapsing functions is even more collapsing
than the individual functions. Mathematicians have a name for non-
collapsing functions: they call them injective or one-to-one

Of course there are some functions that are neither embedding nor
collapsing. They are called bijections and they are truly symmetric, be-
cause they are invertible. In the category of sets, an isomorphism is the
same as a bijection.
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5.8 Challenges

1. Show that the terminal object is unique up to unique isomor-
phism.

2. What is a product of two objects in a poset? Hint: Use the uni-
versal construction.

3. What is a coproduct of two objects in a poset?
4. Implement the equivalent of Haskell Either as a generic type in

your favorite language (other than Haskell).
5. Show that Either is a “better” coproduct than int equipped with

two injections:

int i(int n) { return n; }

int j(bool b) { return b? 0: 1; }

Hint: Define a function

int m(Either const & e);

that factorizes i and j.
6. Continuing the previous problem: Howwould you argue that int

with the two injections i and j cannot be “better” than Either?
7. Still continuing: What about these injections?

int i(int n) {

if (n < 0) return n;

return n + 2;

}

int j(bool b) { return b? 0: 1; }
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8. Come up with an inferior candidate for a coproduct of int and
bool that cannot be better than Either because it allows multiple
acceptable morphisms from it to Either.

5.9 Bibliography

1. The Catsters, Products and Coproducts video.
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6
Simple Algebraic Data Types

We’ve seen two basic ways of combining types: using a product
and a coproduct. It turns out that a lot of data structures in ev-

eryday programming can be built using just these two mechanisms.
This fact has important practical consequences. Many properties of data
structures are composable. For instance, if you know how to compare
values of basic types for equality, and you know how to generalize
these comparisons to product and coproduct types, you can automate
the derivation of equality operators for composite types. In Haskell you
can automatically derive equality, comparison, conversion to and from
string, and more, for a large subset of composite types.

Let’s have a closer look at product and sum types as they appear in
programming.
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6.1 Product Types

The canonical implementation of a product of two types in a program-
ming language is a pair. In Haskell, a pair is a primitive type construc-
tor; in C++ it’s a relatively complex template defined in the Standard
Library.
Pairs are not strictly commutative: a pair (Int, Bool) cannot be sub-
stituted for a pair (Bool, Int), even though they carry the same in-
formation. They are, however, commutative up to isomorphism — the
isomorphism being given by the swap function (which is its own in-
verse):

swap :: (a, b) -> (b, a)

swap (x, y) = (y, x)

You can think of the two pairs as simply using a different format for
storing the same data. It’s just like big endian vs. little endian.

You can combine an arbitrary number of types into a product by
nesting pairs inside pairs, but there is an easier way: nested pairs are
equivalent to tuples. It’s the consequence of the fact that different ways
of nesting pairs are isomorphic. If you want to combine three types in
a product, a, b, and c, in this order, you can do it in two ways:

((a, b), c)
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or

(a, (b, c))

These types are different — you can’t pass one to a function that expects
the other — but their elements are in one-to-one correspondence.There
is a function that maps one to another:

alpha :: ((a, b), c) -> (a, (b, c))

alpha ((x, y), z) = (x, (y, z))

and this function is invertible:

alpha_inv :: (a, (b, c)) -> ((a, b), c)

alpha_inv (x, (y, z)) = ((x, y), z)

so it’s an isomorphism. These are just different ways of repackaging
the same data.

You can interpret the creation of a product type as a binary oper-
ation on types. From that perspective, the above isomorphism looks
very much like the associativity law we’ve seen in monoids:

(a * b) * c = a * (b * c)

Except that, in the monoid case, the two ways of composing products
were equal, whereas here they are only equal “up to isomorphism.”

If we can live with isomorphisms, and don’t insist on strict equality,
we can go even further and show that the unit type, (), is the unit of the
product the same way 1 is the unit of multiplication. Indeed, the pairing
of a value of some type a with a unit doesn’t add any information. The
type:
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(a, ())

is isomorphic to a. Here’s the isomorphism:

rho :: (a, ()) -> a

rho (x, ()) = x

rho_inv :: a -> (a, ())

rho_inv x = (x, ())

These observations can be formalized by saying that Set (the category of
sets) is a monoidal category. It’s a category that’s also a monoid, in the
sense that you can multiply objects (here, take their cartesian product).
I’ll talk more about monoidal categories, and give the full definition in
the future.

There is a more general way of defining product types in Haskell —
especially, as we’ll see soon, when they are combined with sum types. It
uses named constructors with multiple arguments. A pair, for instance,
can be defined alternatively as:

data Pair a b = P a b

Here, Pair a b is the name of the type paremeterized by two other
types, a and b; and P is the name of the data constructor. You define a
pair type by passing two types to the Pair type constructor. You con-
struct a pair value by passing two values of appropriate types to the
constructor P. For instance, let’s define a value stmt as a pair of String
and Bool:

stmt :: Pair String Bool

stmt = P "This statements is" False
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The first line is the type declaration. It uses the type constructor Pair,
with String and Bool replacing a and the b in the generic definition
of Pair. The second line defines the actual value by passing a concrete
string and a concrete Boolean to the data constructor P. Type construc-
tors are used to construct types; data constructors, to construct values.

Since the name spaces for type and data constructors are separate
in Haskell, you will often see the same name used for both, as in:

data Pair a b = Pair a b

And if you squint hard enough, you may even view the built-in pair
type as a variation on this kind of declaration, where the name Pair is
replaced with the binary operator (,). In fact you can use (,) just like
any other named constructor and create pairs using prefix notation:

stmt = (,) "This statement is" False

Similarly, you can use (,,) to create triples, and so on.
Instead of using generic pairs or tuples, you can also define specific

named product types, as in:

data Stmt = Stmt String Bool

which is just a product of String and Bool, but it’s given its own name
and constructor. The advantage of this style of declaration is that you
may define many types that have the same content but different mean-
ing and functionality, and which cannot be substituted for each other.

Programming with tuples and multi-argument constructors can get
messy and error prone — keeping track of which component represents
what. It’s often preferable to give names to components. A product type
with named fields is called a record in Haskell, and a struct in C.
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6.2 Records

Let’s have a look at a simple example. We want to describe chemical
elements by combining two strings, name and symbol; and an inte-
ger, the atomic number; into one data structure. We can use a tuple
(String, String, Int) and remember which component represents
what. We would extract components by pattern matching, as in this
function that checks if the symbol of the element is the prefix of its
name (as in He being the prefix of Helium):

startsWithSymbol :: (String, String, Int) -> Bool

startsWithSymbol (name, symbol, _) = isPrefixOf symbol name

This code is error prone, and is hard to read and maintain. It’s much
better to define a record:

data Element = Element { name :: String

, symbol :: String

, atomicNumber :: Int }

The two representations are isomorphic, as witnessed by these two con-
version functions, which are the inverse of each other:

tupleToElem :: (String, String, Int) -> Element

tupleToElem (n, s, a) = Element { name = n

, symbol = s

, atomicNumber = a }

elemToTuple :: Element -> (String, String, Int)

elemToTuple e = (name e, symbol e, atomicNumber e)
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Notice that the names of record fields also serve as functions to access
these fields. For instance, atomicNumber e retrieves the atomicNumber

field from e. We use atomicNumber as a function of the type:

atomicNumber :: Element -> Int

With the record syntax for Element, our function startsWithSymbol

becomes more readable:

startsWithSymbol :: Element -> Bool

startsWithSymbol e = isPrefixOf (symbol e) (name e)

We could even use the Haskell trick of turning the function isPrefixOf

into an infix operator by surrounding it with backquotes, and make it
read almost like a sentence:

startsWithSymbol e = symbol e `isPrefixOf` name e

The parentheses could be omitted in this case, because an infix operator
has lower precedence than a function call.

6.3 Sum Types

Just as the product in the category of sets gives rise to product types,
the coproduct gives rise to sum types. The canonical implementation
of a sum type in Haskell is:

data Either a b = Left a | Right b

And like pairs, Eithers are commutative (up to isomorphism), can be
nested, and the nesting order is irrelevant (up to isomorphism). So we
can, for instance, define a sum equivalent of a triple:
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data OneOfThree a b c = Sinistral a | Medial b | Dextral c

and so on.
It turns out that Set is also a (symmetric) monoidal category with

respect to coproduct. The role of the binary operation is played by the
disjoint sum, and the role of the unit element is played by the initial
object. In terms of types, we have Either as the monoidal operator
and Void, the uninhabited type, as its neutral element. You can think
of Either as plus, and Void as zero. Indeed, adding Void to a sum type
doesn’t change its content. For instance:

Either a Void

is isomorphic to a. That’s because there is no way to construct a Right

version of this type — there isn’t a value of type Void. The only inhab-
itants of Either a Void are constructed using the Left constructors
and they simply encapsulate a value of type a. So, symbolically, a + 0

= a.
Sum types are pretty common in Haskell, but their C++ equivalents,

unions or variants, are much less common. There are several reasons
for that.

First of all, the simplest sum types are just enumerations and are
implemented using enum in C++. The equivalent of the Haskell sum
type:

data Color = Red | Green | Blue

is the C++:

enum { Red, Green, Blue };
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An even simpler sum type:

data Bool = True | False

is the primitive bool in C++.
Simple sum types that encode the presence or absence of a value

are variously implemented in C++ using special tricks and “impossible”
values, like empty strings, negative numbers, null pointers, etc. This
kind of optionality, if deliberate, is expressed in Haskell using the Maybe
type:

data Maybe a = Nothing | Just a

The Maybe type is a sum of two types. You can see this if you separate
the two constructors into individual types. The first one would look
like this:

data NothingType = Nothing

It’s an enumeration with one value called Nothing. In other words, it’s
a singleton, which is equivalent to the unit type (). The second part:

data JustType a = Just a

is just an encapsulation of the type a. We could have encoded Maybe as:

data Maybe a = Either () a

More complex sum types are often faked in C++ using pointers. A
pointer can be either null, or point to a value of specific type. For in-
stance, a Haskell list type, which can be defined as a (recursive) sum
type:
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List a = Nil | Cons a (List a)

can be translated to C++ using the null pointer trick to implement the
empty list:

template<class A>

class List {

Node<A> * _head;

public:

List() : _head(nullptr) {} // Nil

List(A a, List<A> l) // Cons

: _head(new Node<A>(a, l))

{}

};

Notice that the two Haskell constructors Nil and Cons are translated
into two overloaded List constructors with analogous arguments (none,
for Nil; and a value and a list for Cons).The List class doesn’t need a tag
to distinguish between the two components of the sum type. Instead it
uses the special nullptr value for _head to encode Nil.

The main difference, though, between Haskell and C++ types is
that Haskell data structures are immutable. If you create an object us-
ing one particular constructor, the object will forever remember which
constructor was used and what arguments were passed to it. So a Maybe
object that was created as Just "energy" will never turn into Nothing.
Similarly, an empty list will forever be empty, and a list of three ele-
ments will always have the same three elements.

It’s this immutability that makes construction reversible. Given an
object, you can always disassemble it down to parts that were used
in its construction. This deconstruction is done with pattern matching
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and it reuses constructors as patterns. Constructor arguments, if any,
are replaced with variables (or other patterns).

The List data type has two constructors, so the deconstruction of
an arbitrary List uses two patterns corresponding to those construc-
tors. One matches the empty Nil list, and the other a Cons-constructed
list. For instance, here’s the definition of a simple function on Lists:

maybeTail :: List a -> Maybe (List a)

maybeTail Nil = Nothing

maybeTail (Cons _ t) = Just t

The first part of the definition of maybeTail uses the Nil constructor as
pattern and returns Nothing. The second part uses the Cons constructor
as pattern. It replaces the first constructor argument with a wildcard,
because we are not interested in it. The second argument to Cons is
bound to the variable t (I will call these things variables even though,
strictly speaking, they never vary: once bound to an expression, a vari-
able never changes). The return value is Just t. Now, depending on
how your List was created, it will match one of the clauses. If it was
created using Cons, the two arguments that were passed to it will be
retrieved (and the first discarded).

Evenmore elaborate sum types are implemented in C++ using poly-
morphic class hierarchies. A family of classes with a common ancestor
may be understood as one variant type, in which the vtable serves as a
hidden tag. What in Haskell would be done by pattern matching on the
constructor, and by calling specialized code, in C++ is accomplished by
dispatching a call to a virtual function based on the vtable pointer.

You will rarely see union used as a sum type in C++ because of
severe limitations on what can go into a union. You can’t even put a
std::string into a union because it has a copy constructor.
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6.4 Algebra of Types

Taken separately, product and sum types can be used to define a variety
of useful data structures, but the real strength comes from combining
the two. Once again we are invoking the power of composition.

Let’s summarize what we’ve discovered so far. We’ve seen two
commutative monoidal structures underlying the type system:We have
the sum types with Void as the neutral element, and the product types
with the unit type, (), as the neutral element. We’d like to think of
them as analogous to addition and multiplication. In this analogy, Void
would correspond to zero, and unit, (), to one.

Let’s see how far we can stretch this analogy. For instance, does
multiplication by zero give zero? In other words, is a product type with
one component being Void isomorphic to Void? For example, is it pos-
sible to create a pair of, say Int and Void?

To create a pair you need two values. Although you can easily come
up with an integer, there is no value of type Void. Therefore, for any
type a, the type (a, Void) is uninhabited — has no values — and is
therefore equivalent to Void. In other words, a*0 = 0.

Another thing that links addition and multiplication is the distribu-
tive property:

a * (b + c) = a * b + a * c

Does it also hold for product and sum types? Yes, it does — up to iso-
morphisms, as usual. The left hand side corresponds to the type:

(a, Either b c)

and the right hand side corresponds to the type:
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Either (a, b) (a, c)

Here’s the function that converts them one way:

prodToSum :: (a, Either b c) -> Either (a, b) (a, c)

prodToSum (x, e) =

case e of

Left y -> Left (x, y)

Right z -> Right (x, z)

and here’s one that goes the other way:

sumToProd :: Either (a, b) (a, c) -> (a, Either b c)

sumToProd e =

case e of

Left (x, y) -> (x, Left y)

Right (x, z) -> (x, Right z)

The case of statement is used for pattern matching inside functions.
Each pattern is followed by an arrow and the expression to be evaluated
when the pattern matches. For instance, if you call prodToSum with the
value:

prod1 :: (Int, Either String Float)

prod1 = (2, Left "Hi!")

the e in case e ofwill be equal to Left "Hi!". It will match the pattern
Left y, substituting "Hi!" for y. Since the x has already been matched
to 2, the result of the case of clause, and the whole function, will be
Left (2, "Hi!"), as expected.
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I’m not going to prove that these two functions are the inverse of
each other, but if you think about it, theymust be!They are just trivially
re-packing the contents of the two data structures. It’s the same data,
only different format.

Mathematicians have a name for such two intertwinedmonoids: it’s
called a semiring. It’s not a full ring, because we can’t define subtraction
of types. That’s why a semiring is sometimes called a rig, which is a
pun on “ring without an n” (negative). But barring that, we can get a
lot of mileage from translating statements about, say, natural numbers,
which form a rig, to statements about types. Here’s a translation table
with some entries of interest:

Numbers Types

0 Void

1 ()

a + b Either a b = Left a | Right b

a * b (a, b) or Pair a b = Pair a b

2 = 1 + 1 data Bool = True | False

1 + a data Maybe = Nothing | Just a

The list type is quite interesting, because it’s defined as a solution to
an equation. The type we are defining appears on both sides of the
equation:

List a = Nil | Cons a (List a)

If we do our usual substitutions, and also replace List a with x, we get
the equation:

x = 1 + a * x
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We can’t solve it using traditional algebraic methods because we can’t
subtract or divide types. But we can try a series of substitutions, where
we keep replacing x on the right hand side with (1 + a*x), and use the
distributive property. This leads to the following series:

x = 1 + a*x

x = 1 + a*(1 + a*x) = 1 + a + a*a*x

x = 1 + a + a*a*(1 + a*x) = 1 + a + a*a + a*a*a*x

...

x = 1 + a + a*a + a*a*a + a*a*a*a...

We end up with an infinite sum of products (tuples), which can be in-
terpreted as: A list is either empty, 1; or a singleton, a; or a pair, a*a;
or a triple, a*a*a; etc… Well, that’s exactly what a list is — a string of
as!

There’s much more to lists than that, and we’ll come back to them
and other recursive data structures after we learn about functors and
fixed points.

Solving equations with symbolic variables — that’s algebra! It’s
what gives these types their name: algebraic data types.

Finally, I should mention one very important interpretation of the
algebra of types. Notice that a product of two types a and bmust contain
both a value of type a and a value of type b, which means both types
must be inhabited. A sum of two types, on the other hand, contains
either a value of type a or a value of type b, so it’s enough if one of
them is inhabited. Logical and and or also form a semiring, and it too
can be mapped into type theory:

Logic Types

false Void
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Logic Types

true ()

a || b Either a b = Left a | Right b

a && b (a, b)

This analogy goes deeper, and is the basis of the Curry-Howard iso-
morphism between logic and type theory. We’ll come back to it when
we talk about function types.

6.5 Challenges

1. Show the isomorphism between Maybe a and Either () a.
2. Here’s a sum type defined in Haskell:

data Shape = Circle Float

| Rect Float Float

Whenwe want to define a function like area that acts on a Shape,
we do it by pattern matching on the two constructors:

area :: Shape -> Float

area (Circle r) = pi * r * r

area (Rect d h) = d * h

Implement Shape in C++ or Java as an interface and create two
classes: Circle and Rect. Implement area as a virtual function.

3. Continuing with the previous example: We can easily add a new
function circ that calculates the circumference of a Shape. We
can do it without touching the definition of Shape:
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circ :: Shape -> Float

circ (Circle r) = 2.0 * pi * r

circ (Rect d h) = 2.0 * (d + h)

Add circ to your C++ or Java implementation. What parts of the
original code did you have to touch?

4. Continuing further: Add a new shape, Square, to Shape and make
all the necessary updates. What code did you have to touch in
Haskell vs. C++ or Java? (Even if you’re not a Haskell program-
mer, the modifications should be pretty obvious.)

5. Show that a + a = 2 * a holds for types (up to isomorphism).
Remember that 2 corresponds to Bool, according to our transla-
tion table.
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7
Functors

At the risk of sounding like a broken record, I will say this about
functors: A functor is a very simple but powerful idea. Category

theory is just full of those simple but powerful ideas. A functor is a
mapping between categories. Given two categories, C and D, a functor
F maps objects in C to objects in D — it’s a function on objects. If a is
an object in C, we’ll write its image in D as F a (no parentheses). But a
category is not just objects — it’s objects and morphisms that connect
them. A functor also maps morphisms — it’s a function on morphisms.
But it doesn’t map morphisms willy-nilly — it preserves connections.
So if a morphism f in C connects object a to object b,

f :: a -> b

the image of f in D, F f, will connect the image of a to the image of b:

F f :: F a -> F b
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(This is a mixture of mathematical and Haskell notation that hopefully
makes sense by now. I won’t use parentheses when applying functors
to objects or morphisms.)

As you can see, a functor preserves the structure of a category: what’s
connected in one category will be connected in the other category. But
there’s something more to the structure of a category: there’s also the
composition of morphisms. If h is a composition of f and g:

h = g . f

we want its image under F to be a composition of the images of f and
g:

F h = F g . F f
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Finally, we want all identity morphisms in C to be mapped to identity
morphisms in D:

F ida = idF a

Here, ida is the identity at the object a, and idF a the identity at F a.
Note that these conditions make functors much more restrictive than
regular functions. Functors must preserve the structure of a category.
If you picture a category as a collection of objects held together by
a network of morphisms, a functor is not allowed to introduce any
tears into this fabric. It may smash objects together, it may glue mul-
tiple morphisms into one, but it may never break things apart. This
no-tearing constraint is similar to the continuity condition you might
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know from calculus. In this sense functors are “continuous” (although
there exists an even more restrictive notion of continuity for functors).
Just like functions, functors may do both collapsing and embedding.
The embedding aspect is more prominent when the source category is
much smaller than the target category. In the extreme, the source can
be the trivial singleton category — a category with one object and one
morphism (the identity). A functor from the singleton category to any
other category simply selects an object in that category. This is fully
analogous to the property of morphisms from singleton sets selecting
elements in target sets. The maximally collapsing functor is called the
constant functor Δc. It maps every object in the source category to one
selected object c in the target category. It also maps every morphism
in the source category to the identity morphism idc. It acts like a black
hole, compacting everything into one singularity. We’ll see more of this
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functor when we discuss limits and colimits.

7.1 Functors in Programming

Let’s get down to earth and talk about programming. We have our cat-
egory of types and functions. We can talk about functors that map this
category into itself — such functors are called endofunctors. So what’s
an endofunctor in the category of types? First of all, it maps types to
types. We’ve seen examples of such mappings, maybe without realiz-
ing that they were just that. I’m talking about definitions of types that
were parameterized by other types. Let’s see a few examples.

7.1.1 The Maybe Functor

The definition of Maybe is a mapping from type a to type Maybe a:

data Maybe a = Nothing | Just a

Here’s an important subtlety: Maybe itself is not a type, it’s a type con-
structor. You have to give it a type argument, like Int or Bool, in order
to turn it into a type. Maybe without any argument represents a func-
tion on types. But can we turn Maybe into a functor? (From now on,
when I speak of functors in the context of programming, I will almost
always mean endofunctors.) A functor is not only a mapping of objects
(here, types) but also a mapping of morphisms (here, functions). For
any function from a to b:

f :: a -> b

wewould like to produce a function from Maybe a to Maybe b. To define
such a function, we’ll have two cases to consider, corresponding to the
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two constructors of Maybe. The Nothing case is simple: we’ll just return
Nothing back. And if the argument is Just, we’ll apply the function f

to its contents. So the image of f under Maybe is the function:

f' :: Maybe a -> Maybe b

f' Nothing = Nothing

f' (Just x) = Just (f x)

(By the way, in Haskell you can use apostrophes in variables names,
which is very handy in cases like these.) In Haskell, we implement the
morphism-mapping part of a functor as a higher order function called
fmap. In the case of Maybe, it has the following signature:

fmap :: (a -> b) -> (Maybe a -> Maybe b)

We often say that fmap lifts a function.The lifted function acts on Maybe

values. As usual, because of currying, this signature may be interpreted
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in two ways: as a function of one argument — which itself is a function
(a->b)— returning a function (Maybe a -> Maybe b); or as a function
of two arguments returning Maybe b:

fmap :: (a -> b) -> Maybe a -> Maybe b

Based on our previous discussion, this is how we implement fmap for
Maybe:

fmap _ Nothing = Nothing

fmap f (Just x) = Just (f x)

To show that the type constructor Maybe together with the function
fmap form a functor, we have to prove that fmap preserves identity and
composition.These are called “the functor laws,” but they simply ensure
the preservation of the structure of the category.

7.1.2 Equational Reasoning

To prove the functor laws, I will use equational reasoning, which is a
common proof technique in Haskell. It takes advantage of the fact that
Haskell functions are defined as equalities: the left hand side equals
the right hand side. You can always substitute one for another, possi-
bly renaming variables to avoid name conflicts. Think of this as either
inlining a function, or the other way around, refactoring an expression
into a function. Let’s take the identity function as an example:

id x = x

If you see, for instance, id y in some expression, you can replace it
with y (inlining). Further, if you see id applied to an expression, say id
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(y + 2), you can replace it with the expression itself (y + 2). And this
substitution works both ways: you can replace any expression e with
id e (refactoring). If a function is defined by pattern matching, you can
use each sub-definition independently. For instance, given the above
definition of fmap you can replace fmap f Nothing with Nothing, or
the other way around. Let’s see how this works in practice. Let’s start
with the preservation of identity:

fmap id = id

There are two cases to consider: Nothing and Just. Here’s the first case
(I’m using Haskell pseudo-code to transform the left hand side to the
right hand side):

fmap id Nothing

= { definition of fmap }

Nothing

= { definition of id }

id Nothing

Notice that in the last step I used the definition of id backwards. I re-
placed the expression Nothing with id Nothing. In practice, you carry
out such proofs by “burning the candle at both ends,” until you hit the
same expression in the middle — here it was Nothing. The second case
is also easy:

fmap id (Just x)

= { definition of fmap }

Just (id x)

= { definition of id }

Just x

99



= { definition of id }

id (Just x)

Now, lets show that fmap preserves composition:

fmap (g . f) = fmap g . fmap f

First the Nothing case:

fmap (g . f) Nothing

= { definition of fmap }

Nothing

= { definition of fmap }

fmap g Nothing

= { definition of fmap }

fmap g (fmap f Nothing)

And then the Just case:

fmap (g . f) (Just x)

= { definition of fmap }

Just ((g . f) x)

= { definition of composition }

Just (g (f x))

= { definition of fmap }

fmap g (Just (f x))

= { definition of fmap }

fmap g (fmap f (Just x))

= { definition of composition }

(fmap g . fmap f) (Just x)
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It’s worth stressing that equational reasoning doesn’t work for C++
style “functions” with side effects. Consider this code:

int square(int x) {

return x * x;

}

int counter() {

static int c = 0;

return c++;

}

double y = square(counter());

Using equational reasoning, you would be able to inline square to get:

double y = counter() * counter();

This is definitely not a valid transformation, and it will not produce the
same result. Despite that, the C++ compiler will try to use equational
reasoning if you implement square as a macro, with disastrous results.

7.1.3 Optional

Functors are easily expressed in Haskell, but they can be defined in any
language that supports generic programming and higher-order func-
tions. Let’s consider the C++ analog of Maybe, the template type optional.
Here’s a sketch of the implementation (the actual implementation is
much more complex, dealing with various ways the argument may be
passed, with copy semantics, and with the resource management issues
characteristic of C++):
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template<class T>

class optional {

bool _isValid; // the tag

T _v;

public:

optional() : _isValid(false) {} // Nothing

optional(T x) : _isValid(true) , _v(x) {} // Just

bool isValid() const { return _isValid; }

T val() const { return _v; } };

This template provides one part of the definition of a functor: the map-
ping of types. It maps any type T to a new type optional<T>. Let’s
define its action on functions:

template<class A, class B>

std::function<optional<B>(optional<A>)>

fmap(std::function<B(A)> f) {

return [f](optional<A> opt) {

if (!opt.isValid())

return optional<B>{};

else

return optional<B>{ f(opt.val()) };

};

}

This is a higher order function, taking a function as an argument and
returning a function. Here’s the uncurried version of it:

template<class A, class B>

optional<B> fmap(std::function<B(A)> f, optional<A> opt) {
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if (!opt.isValid())

return optional<B>{};

else

return optional<B>{ f(opt.val()) };

}

There is also an option of making fmap a template method of optional.
This embarrassment of choices makes abstracting the functor pattern
in C++ a problem. Should functor be an interface to inherit from (un-
fortunately, you can’t have template virtual functions)? Should it be a
curried or an uncurried free template function? Can the C++ compiler
correctly infer the missing types, or should they be specified explicitly?
Consider a situation where the input function f takes an int to a bool.
How will the compiler figure out the type of g:

auto g = fmap(f);

especially if, in the future, there aremultiple functors overloading fmap?
(We’ll see more functors soon.)

7.1.4 Typeclasses

So how does Haskell deal with abstracting the functor? It uses the type-
class mechanism. A typeclass defines a family of types that support a
common interface. For instance, the class of objects that support equal-
ity is defined as follows:

class Eq a where

(==) :: a -> a -> Bool
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This definition states that type a is of the class Eq if it supports the
operator (==) that takes two arguments of type a and returns a Bool.
If you want to tell Haskell that a particular type is Eq, you have to
declare it an instance of this class and provide the implementation of
(==). For example, given the definition of a 2D Point (a product type
of two Floats):

data Point = Pt Float Float

you can define the equality of points:

instance Eq Point where

(Pt x y) == (Pt x' y') = x == x' && y == y'

Here I used the operator (==) (the one I’m defining) in the infix po-
sition between the two patterns (Pt x y) and (Pt x' y'). The body
of the function follows the single equal sign. Once Point is declared
an instance of Eq, you can directly compare points for equality. No-
tice that, unlike in C++ or Java, you don’t have to specify the Eq class
(or interface) when defining Point — you can do it later in client code.
Typeclasses are also Haskell’s only mechanism for overloading func-
tions (and operators). We will need that for overloading fmap for dif-
ferent functors. There is one complication, though: a functor is not de-
fined as a type but as a mapping of types, a type constructor. We need
a typeclass that’s not a family of types, as was the case with Eq, but a
family of type constructors. Fortunately a Haskell typeclass works with
type constructors as well as with types. So here’s the definition of the
Functor class:

class Functor f where

fmap :: (a -> b) -> f a -> f b
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It stipulates that f is a Functor if there exists a function fmap with the
specified type signature. The lowercase f is a type variable, similar to
type variables a and b. The compiler, however, is able to deduce that it
represents a type constructor rather than a type by looking at its usage:
acting on other types, as in f a and f b. Accordingly, when declaring
an instance of Functor, you have to give it a type constructor, as is the
case with Maybe:

instance Functor Maybe where

fmap _ Nothing = Nothing

fmap f (Just x) = Just (f x)

By the way, the Functor class, as well as its instance definitions for a lot
of simple data types, including Maybe, are part of the standard Prelude
library.

7.1.5 Functor in C++

Can we try the same approach in C++? A type constructor corresponds
to a template class, like optional, so by analogy, we would parameter-
ize fmap with a template template parameter F. This is the syntax for
it:

template<template<class> F, class A, class B>

F<B> fmap(std::function<B(A)>, F<A>);

We would like to be able to specialize this template for different func-
tors. Unfortunately, there is a prohibition against partial specialization
of template functions in C++. You can’t write:

template<class A, class B>

optional<B> fmap<optional>(std::function<B(A)> f, optional<A> opt)
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Instead, we have to fall back on function overloading, which brings us
back to the original definition of the uncurried fmap:

template<class A, class B>

optional<B> fmap(std::function<B(A)> f, optional<A> opt) {

if (!opt.isValid())

return optional<B>{};

else

return optional<B>{ f(opt.val()) };

}

This definition works, but only because the second argument of fmap
selects the overload. It totally ignores the more generic definition of
fmap.

7.1.6 The List Functor

To get some intuition as to the role of functors in programming, we
need to look at more examples. Any type that is parameterized by an-
other type is a candidate for a functor. Generic containers are param-
eterized by the type of the elements they store, so let’s look at a very
simple container, the list:

data List a = Nil | Cons a (List a)

We have the type constructor List, which is a mapping from any type
a to the type List a. To show that List is a functor we have to define
the lifting of functions: Given a function a->b define a function
List a -> List b:

fmap :: (a -> b) -> (List a -> List b)
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A function acting on List a must consider two cases corresponding
to the two list constructors. The Nil case is trivial — just return Nil —
there isn’t much you can do with an empty list. The Cons case is a bit
tricky, because it involves recursion. So let’s step back for a moment
and consider what we are trying to do. We have a list of a, a function f

that turns a to b, and we want to generate a list of b. The obvious thing
is to use f to turn each element of the list from a to b. How do we do
this in practice, given that a (non-empty) list is defined as the Cons of a
head and a tail? We apply f to the head and apply the lifted (fmapped) f
to the tail. This is a recursive definition, because we are defining lifted
f in terms of lifted f:

fmap f (Cons x t) = Cons (f x) (fmap f t)

Notice that, on the right hand side, fmap f is applied to a list that’s
shorter than the list for which we are defining it — it’s applied to its
tail. We recurse towards shorter and shorter lists, so we are bound to
eventually reach the empty list, or Nil. But as we’ve decided earlier,
fmap f acting on Nil returns Nil, thus terminating the recursion. To
get the final result, we combine the new head (f x) with the new tail
(fmap f t) using the Cons constructor. Putting it all together, here’s
the instance declaration for the list functor:

instance Functor List where

fmap _ Nil = Nil

fmap f (Cons x t) = Cons (f x) (fmap f t)

If you aremore comfortable with C++, consider the case of a std::vector,
which could be considered the most generic C++ container. The im-
plementation of fmap for std::vector is just a thin encapsulation of
std::transform:
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template<class A, class B>

std::vector<B> fmap(std::function<B(A)> f, std::vector<A> v) {

std::vector<B> w;

std::transform( std::begin(v)

, std::end(v)

, std::back_inserter(w)

, f);

return w;

}

We can use it, for instance, to square the elements of a sequence of
numbers:

std::vector<int> v{ 1, 2, 3, 4 };

auto w = fmap([](int i) { return i*i; }, v);

std::copy( std::begin(w)

, std::end(w)

, std::ostream_iterator(std::cout, ", "));

Most C++ containers are functors by virtue of implementing iterators
that can be passed to std::transform, which is the more primitive
cousin of fmap. Unfortunately, the simplicity of a functor is lost under
the usual clutter of iterators and temporaries (see the implementation
of fmap above). I’m happy to say that the new proposed C++ range
library makes the functorial nature of ranges much more pronounced.

7.1.7 The Reader Functor

Now that you might have developed some intuitions — for instance,
functors being some kind of containers — let me show you an example
which at first sight looks very different. Consider a mapping of type a
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to the type of a function returning a. We haven’t really talked about
function types in depth — the full categorical treatment is coming —
but we have some understanding of those as programmers. In Haskell,
a function type is constructed using the arrow type constructor (->)
which takes two types: the argument type and the result type. You’ve
already seen it in infix form, a->b, but it can equally well be used in
prefix form, when parenthesized:

(->) a b

Just like with regular functions, type functions of more than one ar-
gument can be partially applied. So when we provide just one type
argument to the arrow, it still expects another one. That’s why:

(->) a

is a type constructor. It needs one more type b to produce a complete
type a->b. As it stands, it defines a whole family of type constructors
parameterized by a. Let’s see if this is also a family of functors. Dealing
with two type parameters can get a bit confusing, so let’s do some
renaming. Let’s call the argument type r and the result type a, in line
with our previous functor definitions. So our type constructor takes any
type a and maps it into the type r->a. To show that it’s a functor, we
want to lift a function a->b to a function that takes r->a and returns
r->b. These are the types that are formed using the type constructor
(->) r acting on, respectively, a and b. Here’s the type signature of
fmap applied to this case:

fmap :: (a -> b) -> (r -> a) -> (r -> b)
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We have to solve the following puzzle: given a function f::a->b and a
function g::r->a, create a function r->b. There is only one way we can
compose the two functions, and the result is exactly what we need. So
here’s the implementation of our fmap:

instance Functor ((->) r) where

fmap f g = f . g

It just works! If you like terse notation, this definition can be reduced
further by noticing that composition can be rewritten in prefix form:

fmap f g = (.) f g

and the arguments can be omitted to yield a direct equality of two func-
tions:

fmap = (.)

This combination of the type constructor (->) rwith the above imple-
mentation of fmap is called the reader functor.

7.2 Functors as Containers

We’ve seen some examples of functors in programming languages that
define general-purpose containers, or at least objects that contain some
value of the type they are parameterized over.The reader functor seems
to be an outlier, because we don’t think of functions as data. But we’ve
seen that pure functions can be memoized, and function execution can
be turned into table lookup. Tables are data. Conversely, because of
Haskell’s laziness, a traditional container, like a list, may actually be
implemented as a function. Consider, for instance, an infinite list of
natural numbers, which can be compactly defined as:
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nats :: [Integer] nats = [1..]

In the first line, a pair of square brackets is the Haskell’s built-in type
constructor for lists. In the second line, square brackets are used to
create a list literal. Obviously, an infinite list like this cannot be stored
in memory. The compiler implements it as a function that generates
Integers on demand. Haskell effectively blurs the distinction between
data and code. A list could be considered a function, and a function
could be considered a table that maps arguments to results. The latter
can even be practical if the domain of the function is finite and not too
large. It would not be practical, however, to implement strlen as table
lookup, because there are infinitelymany different strings. As program-
mers, we don’t like infinities, but in category theory you learn to eat
infinities for breakfast. Whether it’s a set of all strings or a collection
of all possible states of the Universe, past, present, and future — we can
deal with it! So I like to think of the functor object (an object of the type
generated by an endofunctor) as containing a value or values of the type
over which it is parameterized, even if these values are not physically
present there. One example of a functor is a C++ std::future, which
may at some point contain a value, but it’s not guaranteed it will; and
if you want to access it, you may block waiting for another thread to
finish execution. Another example is a Haskell IO object, which may
contain user input, or the future versions of our Universe with “Hello
World!” displayed on the monitor. According to this interpretation, a
functor object is something that may contain a value or values of the
type it’s parameterized upon. Or it may contain a recipe for generating
those values. We are not at all concerned about being able to access the
values — that’s totally optional, and outside of the scope of the functor.
All we are interested in is to be able to manipulate those values using
functions. If the values can be accessed, then we should be able to see
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the results of this manipulation. If they can’t, then all we care about
is that the manipulations compose correctly and that the manipulation
with an identity function doesn’t change anything. Just to show you
how much we don’t care about being able to access the values inside
a functor object, here’s a type constructor that ignores completely its
argument a:

data Const c a = Const c

The Const type constructor takes two types, c and a. Just like we did
with the arrow constructor, we are going to partially apply it to create
a functor. The data constructor (also called Const) takes just one value
of type c. It has no dependence on a. The type of fmap for this type
constructor is:

fmap :: (a -> b) -> Const c a -> Const c b

Because the functor ignores its type argument, the implementation of
fmap is free to ignore its function argument — the function has nothing
to act upon:

instance Functor (Const c) where

fmap _ (Const v) = Const v

This might be a little clearer in C++ (I never thought I would utter those
words!), where there is a stronger distinction between type arguments
— which are compile-time — and values, which are run-time:

template<class C, class A>

struct Const {

Const(C v) : _v(v) {}

C _v;

};
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The C++ implementation of fmap also ignores the function argument
and essentially re-casts the Const argument without changing its value:

template<class C, class A, class B>

Const<C, B> fmap(std::function<B(A)> f, Const<C, A> c) {

return Const<C, B>{c._v};

}

Despite its weirdness, the Const functor plays an important role in
many constructions. In category theory, it’s a special case of the Δc
functor I mentioned earlier — the endo-functor case of a black hole.
We’ll be seeing more of it it in the future.

7.3 Functor Composition

It’s not hard to convince yourself that functors between categories
compose, just like functions between sets compose. A composition of
two functors, when acting on objects, is just the composition of their
respective object mappings; and similarly when acting on morphisms.
After jumping through two functors, identity morphisms end up as
identity morphisms, and compositions of morphisms finish up as com-
positions of morphisms.There’s really nothing much to it. In particular,
it’s easy to compose endofunctors. Remember the function maybeTail?
I’ll rewrite it using the Haskell’s built in implementation of lists:

maybeTail :: [a] -> Maybe [a]

maybeTail [] = Nothing

maybeTail (x:xs) = Just xs

(The empty list constructor that we used to call Nil is replaced with the
empty pair of square brackets []. The Cons constructor is replaced with
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the infix operator : (colon).) The result of maybeTail is of a type that’s
a composition of two functors, Maybe and [], acting on a. Each of these
functors is equipped with its own version of fmap, but what if we want
to apply some function f to the contents of the composite: a Maybe list?
We have to break through two layers of functors. We can use fmap to
break through the outer Maybe. But we can’t just send f inside Maybe

because f doesn’t work on lists. We have to send (fmap f) to operate
on the inner list. For instance, let’s see how we can square the elements
of a Maybe list of integers:

square x = x * x

mis :: Maybe [Int]

mis = Just [1, 2, 3]

mis2 = fmap (fmap square) mis

The compiler, after analyzing the types, will figure out that, for the
outer fmap, it should use the implementation from the Maybe instance,
and for the inner one, the list functor implementation. It may not be
immediately obvious that the above code may be rewritten as:

mis2 = (fmap . fmap) square mis

But remember that fmap may be considered a function of just one ar-
gument:

fmap :: (a -> b) -> (f a -> f b)

In our case, the second fmap in (fmap . fmap) takes as its argument:
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square :: Int -> Int

and returns a function of the type:

[Int] -> [Int]

The first fmap then takes that function and returns a function:

Maybe [Int] -> Maybe [Int]

Finally, that function is applied to mis. So the composition of two func-
tors is a functor whose fmap is the composition of the corresponding
fmaps. Going back to category theory: It’s pretty obvious that func-
tor composition is associative (the mapping of objects is associative,
and the mapping of morphisms is associative). And there is also a triv-
ial identity functor in every category: it maps every object to itself,
and every morphism to itself. So functors have all the same properties
as morphisms in some category. But what category would that be? It
would have to be a category in which objects are categories and mor-
phisms are functors. It’s a category of categories. But a category of
all categories would have to include itself, and we would get into the
same kinds of paradoxes that made the set of all sets impossible. There
is, however, a category of all small categories called Cat (which is big,
so it can’t be a member of itself). A small category is one in which ob-
jects form a set, as opposed to something larger than a set. Mind you, in
category theory, even an infinite uncountable set is considered “small.”
I thought I’d mention these things because I find it pretty amazing that
we can recognize the same structures repeating themselves at many
levels of abstraction. We’ll see later that functors form categories as
well.
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7.4 Challenges

1. Can we turn the Maybe type constructor into a functor by defin-
ing:

fmap _ _ = Nothing

which ignores both of its arguments? (Hint: Check the functor
laws.)

2. Prove functor laws for the reader functor. Hint: it’s really simple.
3. Implement the reader functor in your second favorite language

(the first being Haskell, of course).
4. Prove the functor laws for the list functor. Assume that the laws

are true for the tail part of the list you’re applying it to (in other
words, use induction).
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8
Functors

Now that you know what a functor is, and have seen a few exam-
ples, let’s see how we can build larger functors from smaller ones.

In particular it’s interesting to see which type constructors (which cor-
respond to mappings between objects in a category) can be extended
to functors (which include mappings between morphisms).

8.1 Bifunctors

Since functors are morphisms in Cat (the category of categories), a lot
of intuitions about morphisms — and functions in particular — apply to
functors as well. For instance, just like you can have a function of two
arguments, you can have a functor of two arguments, or a bifunctor.
On objects, a bifunctor maps every pair of objects, one from category
C, and one from category D, to an object in category E. Notice that this
is just saying that it’s a mapping from a cartesian product of categories

117



C×D to E.
That’s pretty straightforward. But functoriality means that a bifunctor
has to map morphisms as well. This time, though, it must map a pair of
morphisms, one from C and one from D, to a morphism in E.

Again, a pair of morphisms is just a single morphism in the product
category C×D. We define a morphism in a cartesian product of cate-
gories as a pair of morphisms which goes from one pair of objects to
another pair of objects. These pairs of morphisms can be composed in
the obvious way:

(f, g) � (f', g') = (f � f', g � g')

The composition is associative and it has an identity — a pair of iden-
tity morphisms (id, id). So a cartesian product of categories is indeed a
category.
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But an easier way to think about bifunctors is that they are func-
tors in both arguments. So instead of translating functorial laws — as-
sociativity and identity preservation — from functors to bifunctors, it’s
enough to check them separately for each argument. If you have a map-
ping from a pair of categories to a third category, and you prove that
it is functorial in each argument separately (i.e., keeping the other ar-
gument constant), then the mapping is automatically a bifunctor. By
functorial I mean that it acts on morphisms like an honest functor.

Let’s define a bifunctor in Haskell. In this case all three categories
are the same: the category of Haskell types. A bifunctor is a type con-
structor that takes two type arguments. Here’s the definition of the
Bifunctor typeclass taken directly from the library Control.Bifunctor:

class Bifunctor f where

bimap :: (a -> c) -> (b -> d) -> f a b -> f c d

bimap g h = first g . second h

first :: (a -> c) -> f a b -> f c b

first g = bimap g id

second :: (b -> d) -> f a b -> f a d

second = bimap id

The type variable f represents the bifunctor. You can see that in all type
signatures it’s always applied to two type arguments. The first type
signature defines bimap: a mapping of two functions at once. The result
is a lifted function, (f a b -> f c d), operating on types generated
by the bifunctor’s type constructor. There is a default implementation
of bimap in terms of first and second, which shows that it’s enough
to have functoriality in each argument separately to be able to define
a bifunctor.
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bimap

The two other type signatures, first and second, are the two fmaps
witnessing the functoriality of f in the first and the second argument,
respectively.

first second

The typeclass definition provides default implementations for both of
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them in terms of bimap.
When declaring an instance of Bifunctor, you have a choice of

either implementing bimap and accepting the defaults for first and
second, or implementing both first and second and accepting the de-
fault for bimap (of course, you may implement all three of them, but
then it’s up to you to make sure they are related to each other in this
manner).

8.2 Product and Coproduct Bifunctors

An important example of a bifunctor is the categorical product — a
product of two objects that is defined by a universal construction. If the
product exists for any pair of objects, the mapping from those objects
to the product is bifunctorial. This is true in general, and in Haskell in
particular. Here’s the Bifunctor instance for a pair constructor — the
simplest product type:

instance Bifunctor (,) where

bimap f g (x, y) = (f x, g y)

There isn’t much choice: bimap simply applies the first function to the
first component, and the second function to the second component of
a pair. The code pretty much writes itself, given the types:

bimap :: (a -> c) -> (b -> d) -> (a, b) -> (c, d)

The action of the bifunctor here is to make pairs of types, for instance:

(,) a b = (a, b)
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By duality, a coproduct, if it’s defined for every pair of objects in a
category, is also a bifunctor. In Haskell, this is exemplified by the Either
type constructor being an instance of Bifunctor:

instance Bifunctor Either where

bimap f _ (Left x) = Left (f x)

bimap _ g (Right y) = Right (g y)

This code also writes itself.
Now, rememberwhenwe talked aboutmonoidal categories? Amonoidal

category defines a binary operator acting on objects, together with a
unit object. I mentioned that Set is a monoidal category with respect
to cartesian product, with the singleton set as a unit. And it’s also a
monoidal category with respect to disjoint union, with the empty set
as a unit. What I haven’t mentioned is that one of the requirements for
a monoidal category is that the binary operator be a bifunctor. This is
a very important requirement — we want the monoidal product to be
compatible with the structure of the category, which is defined by mor-
phisms. We are now one step closer to the full definition of a monoidal
category (we still need to learn about naturality, before we can get
there).

8.3 Functorial Algebraic Data Types

We’ve seen several examples of parameterized data types that turned
out to be functors —wewere able to define fmap for them. Complex data
types are constructed from simpler data types. In particular, algebraic
data types (ADTs) are created using sums and products. We have just
seen that sums and products are functorial. We also know that functors
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compose. So if we can show that the basic building blocks of ADTs are
functorial, we’ll know that parameterized ADTs are functorial too.

So what are the building blocks of parameterized algebraic data
types? First, there are the items that have no dependency on the type
parameter of the functor, like Nothing in Maybe, or Nil in List. They are
equivalent to the Const functor. Remember, the Const functor ignores
its type parameter (really, the second type parameter, which is the one
of interest to us, the first one being kept constant).

Then there are the elements that simply encapsulate the type pa-
rameter itself, like Just in Maybe. They are equivalent to the identity
functor. I mentioned the identity functor previously, as the identity
morphism in Cat, but didn’t give its definition in Haskell. Here it is:

data Identity a = Identity a

instance Functor Identity where

fmap f (Identity x) = Identity (f x)

You can think of Identity as the simplest possible container that al-
ways stores just one (immutable) value of type a.

Everything else in algebraic data structures is constructed from
these two primitives using products and sums.

With this new knowledge, let’s have a fresh look at the Maybe type
constructor:

data Maybe a = Nothing | Just a

It’s a sum of two types, and we now know that the sum is functorial.
The first part, Nothing can be represented as a Const () acting on a

(the first type parameter of Const is set to unit — later we’ll see more
interesting uses of Const). The second part is just a different name for
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the identity functor. We could have defined Maybe, up to isomorphism,
as:

type Maybe a = Either (Const () a) (Identity a)

So Maybe is the composition of the bifunctor Either with two functors,
Const () and Identity. (Const is really a bifunctor, but here we always
use it partially applied.)

We’ve already seen that a composition of functors is a functor —
we can easily convince ourselves that the same is true of bifunctors.
All we need is to figure out how a composition of a bifunctor with two
functors works on morphisms. Given two morphisms, we simply lift
one with one functor and the other with the other functor. We then lift
the resulting pair of lifted morphisms with the bifunctor.

We can express this composition in Haskell. Let’s define a data type
that is parameterized by a bifunctor bf (it’s a type variable that is a type
constructor that takes two types as arguments), two functors fu and gu

(type constructors that take one type variable each), and two regular
types a and b. We apply fu to a and gu to b, and then apply bf to the
resulting two types:

newtype BiComp bf fu gu a b = BiComp (bf (fu a) (gu b))

That’s the composition on objects, or types. Notice how in Haskell we
apply type constructors to types, just like we apply functions to argu-
ments. The syntax is the same.

If you’re getting a little lost, try applying BiComp to Either, Const
(), Identity, a, and b, in this order. You will recover our bare-bone
version of Maybe b (a is ignored).

The new data type BiComp is a bifunctor in a and b, but only if bf is
itself a Bifunctor and fu and gu are Functors. The compiler must know
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that there will be a definition of bimap available for bf, and definitions
of fmap for fu and gu. In Haskell, this is expressed as a precondition in
the instance declaration: a set of class constraints followed by a double
arrow:

instance (Bifunctor bf, Functor fu, Functor gu) =>

Bifunctor (BiComp bf fu gu) where

bimap f1 f2 (BiComp x) = BiComp ((bimap (fmap f1) (fmap f2)) x)

The implementation of bimap for BiComp is given in terms of bimap for
bf and the two fmaps for fu and gu.The compiler automatically infers all
the types and picks the correct overloaded functions whenever BiComp
is used.

The x in the definition of bimap has the type:

bf (fu a) (gu b)

which is quite a mouthful. The outer bimap breaks through the outer bf
layer, and the two fmaps dig under fu and gu, respectively. If the types
of f1 and f2 are:

f1 :: a -> a'

f2 :: b -> b'

then the final result is of the type bf (fu a') (gu b'):

bimap (fu a -> fu a') -> (gu b -> gu b')

-> bf (fu a) (gu b) -> bf (fu a') (gu b')

If you like jigsaw puzzles, these kinds of type manipulations can pro-
vide hours of entertainment.
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So it turns out that we didn’t have to prove that Maybewas a functor
— this fact followed from the way it was constructed as a sum of two
functorial primitives.

A perceptive reader might ask the question: If the derivation of the
Functor instance for algebraic data types is so mechanical, can’t it be
automated and performed by the compiler? Indeed, it can, and it is. You
need to enable a particular Haskell extension by including this line at
the top of your source file:

{-# LANGUAGE DeriveFunctor #-}

and then add deriving Functor to your data structure:

data Maybe a = Nothing | Just a deriving Functor

and the corresponding fmap will be implemented for you.
The regularity of algebraic data structures makes it possible to de-

rive instances not only of Functor but of several other type classes,
including the Eq type class I mentioned before. There is also the option
of teaching the compiler to derive instances of your own typeclasses,
but that’s a bit more advanced. The idea though is the same: You pro-
vide the behavior for the basic building blocks and sums and products,
and let the compiler figure out the rest.

8.4 Functors in C++

If you are a C++ programmer, you obviously are on your own as far
as implementing functors goes. However, you should be able to rec-
ognize some types of algebraic data structures in C++. If such a data
structure is made into a generic template, you should be able to quickly
implement fmap for it.
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Let’s have a look at a tree data structure, which we would define in
Haskell as a recursive sum type:

data Tree a = Leaf a | Node (Tree a) (Tree a)

deriving Functor

As I mentioned before, one way of implementing sum types in C++ is
through class hierarchies. It would be natural, in an object-oriented lan-
guage, to implement fmap as a virtual function of the base class Functor
and then override it in all subclasses. Unfortunately this is impossible
because fmap is a template, parameterized not only by the type of the
object it’s acting upon (the this pointer) but also by the return type
of the function that’s been applied to it. Virtual functions cannot be
templatized in C++. We’ll implement fmap as a generic free function,
and we’ll replace pattern matching with dynamic_cast.

The base class must define at least one virtual function in order to
support dynamic casting, so we’ll make the destructor virtual (which
is a good idea in any case):

template<class T>

struct Tree {

virtual ~Tree() {};

};

The Leaf is just an Identity functor in disguise:

template<class T>

struct Leaf : public Tree<T> {

T _label;

Leaf(T l) : _label(l) {}

};
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The Node is a product type:

template<class T>

struct Node : public Tree<T> {

Tree<T> * _left;

Tree<T> * _right;

Node(Tree<T> * l, Tree<T> * r) : _left(l), _right(r) {}

};

When implementing fmap we take advantage of dynamic dispatching
on the type of the Tree. The Leaf case applies the Identity version
of fmap, and the Node case is treated like a bifunctor composed with
two copies of the Tree functor. As a C++ programmer, you’re probably
not used to analyzing code in these terms, but it’s a good exercise in
categorical thinking.

template<class A, class B>

Tree<B> * fmap(std::function<B(A)> f, Tree<A> * t) {

Leaf<A> * pl = dynamic_cast <Leaf<A>*>(t);

if (pl)

return new Leaf<B>(f (pl->_label));

Node<A> * pn = dynamic_cast<Node<A>*>(t);

if (pn)

return new Node<B>( fmap<A>(f, pn->_left)

, fmap<A>(f, pn->_right));

return nullptr;

}

For simplicity, I decided to ignore memory and resource management
issues, but in production code you would probably use smart pointers
(unique or shared, depending on your policy).
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Compare it with the Haskell implementation of fmap:

instance Functor Tree where

fmap f (Leaf a) = Leaf (f a)

fmap f (Node t t') = Node (fmap f t) (fmap f t')

This implementation can also be automatically derived by the compiler.

8.5 The Writer Functor

I promised that I would come back to the Kleisli category I described
earlier. Morphisms in that category were represented as “embellished”
functions returning the Writer data structure.

type Writer a = (a, String)

I said that the embellishment was somehow related to endofunctors.
And, indeed, the Writer type constructor is functorial in a. We don’t
even have to implement fmap for it, because it’s just a simple product
type.

But what’s the relation between a Kleisli category and a functor —
in general? A Kleisli category, being a category, defines composition
and identity. Let’ me remind you that the composition is given by the
fish operator:

(>=>) :: (a -> Writer b) -> (b -> Writer c) -> (a -> Writer c)

m1 >=> m2 = \x ->

let (y, s1) = m1 x

(z, s2) = m2 y

in (z, s1 ++ s2)
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and the identity morphism by a function called return:

return :: a -> Writer a return x = (x, "")

It turns out that, if you look at the types of these two functions long
enough (and I mean, long enough), you can find a way to combine them
to produce a function with the right type signature to serve as fmap.
Like this:

fmap f = id >=> (\x -> return (f x))

Here, the fish operator combines two functions: one of them is the fa-
miliar id, and the other is a lambda that applies return to the result
of acting with f on the lambda’s argument. The hardest part to wrap
your brain around is probably the use of id. Isn’t the argument to the
fish operator supposed to be a function that takes a “normal” type and
returns an embellished type? Well, not really. Nobody says that a in a

-> Writer b must be a “normal” type. It’s a type variable, so it can be
anything, in particular it can be an embellished type, like Writer b.

So idwill take Writer a and turn it into Writer a.The fish operator
will fish out the value of a and pass it as x to the lambda. There, f
will turn it into a b and return will embellish it, making it Writer b.
Putting it all together, we end up with a function that takes Writer a

and returns Writer b, exactly what fmap is supposed to produce.
Notice that this argument is very general: you can replace Writer

with any type constructor. As long as it supports a fish operator and
return, you can define fmap as well. So the embellishment in the Kleisli
category is always a functor. (Not every functor, though, gives rise to
a Kleisli category.)

You might wonder if the fmap we have just defined is the same
fmap the compiler would have derived for us with deriving Functor.
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Interestingly enough, it is. This is due to the way Haskell implements
polymorphic functions. It’s called parametric polymorphism, and it’s a
source of so called theorems for free. One of those theorems says that,
if there is an implementation of fmap for a given type constructor, one
that preserves identity, then it must be unique.

8.6 Covariant and Contravariant Functors

Now that we’ve reviewed the writer functor, let’s go back to the reader
functor. It was based on the partially applied function-arrow type con-
structor:

(->) r

We can rewrite it as a type synonym:

type Reader r a = r -> a

for which the Functor instance, as we’ve seen before, reads:

instance Functor (Reader r) where

fmap f g = f . g

But just like the pair type constructor, or the Either type constructor,
the function type constructor takes two type arguments. The pair and
Either were functorial in both arguments — they were bifunctors. Is
the function constructor a bifunctor too?

Let’s try to make it functorial in the first argument. We’ll start with
a type synonym — it’s just like the Reader but with the arguments
flipped:
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type Op r a = a -> r

This time we fix the return type, r, and vary the argument type, a. Let’s
see if we can somehow match the types in order to implement fmap,
which would have the following type signature:

fmap :: (a -> b) -> (a -> r) -> (b -> r)

With just two functions taking a and returning, respectively, b and r,
there is simply no way to build a function taking b and returning r! It
would be different if we could somehow invert the first function, so that
it took b and returned a instead. We can’t invert an arbitrary function,
but we can go to the opposite category.

A short recap: For every category C there is a dual category Cop. It’s
a category with the same objects as C, but with all the arrows reversed.

Consider a functor that goes between Cop and some other category
D:
F :: Cop → D
Such a functor maps a morphism fop :: a → b in Cop to the morphism F
fop :: F a→ F b in D. But the morphism fop secretly corresponds to some
morphism f :: b → a in the original category C. Notice the inversion.

Now, F is a regular functor, but there is another mapping we can
define based on F, which is not a functor — let’s call it G. It’s a mapping
from C to D. It maps objects the same way F does, but when it comes
to mapping morphisms, it reverses them. It takes a morphism f :: b →
a in C, maps it first to the opposite morphism fop :: a→ b and then uses
the functor F on it, to get F fop :: F a → F b.

Considering that F a is the same as G a and F b is the same as G b,
the whole trip can be described as:
G f :: (b → a) → (G a → G b)
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It’s a “functor with a twist.” Amapping of categories that inverts the
direction of morphisms in this manner is called a contravariant functor.
Notice that a contravariant functor is just a regular functor from the
opposite category. The regular functors, by the way — the kind we’ve
been studying thus far — are called covariant functors.

Here’s the typeclass defining a contravariant functor (really, a con-
travariant endofunctor) in Haskell:

class Contravariant f where

contramap :: (b -> a) -> (f a -> f b)

Our type constructor Op is an instance of it:

instance Contravariant (Op r) where

-- (b -> a) -> Op r a -> Op r b

contramap f g = g . f
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Notice that the function f inserts itself before (that is, to the right of)
the contents of Op — the function g.

The definition of contramap for Op may be made even terser, if you
notice that it’s just the function composition operator with the argu-
ments flipped. There is a special function for flipping arguments, called
flip:

flip :: (a -> b -> c) -> (b -> a -> c)

flip f y x = f x y

With it, we get:

contramap = flip (.)

8.7 Profunctors

We’ve seen that the function-arrow operator is contravariant in its first
argument and covariant in the second. Is there a name for such a beast?
It turns out that, if the target category is Set, such a beast is called a
profunctor. Because a contravariant functor is equivalent to a covariant
functor from the opposite category, a profunctor is defined as:
Cop × D → Set

Since, to first approximation, Haskell types are sets, we apply the
name Profunctor to a type constructor p of two arguments, which is
contra-functorial in the first argument and functorial in the second.
Here’s the appropriate typeclass taken from the Data.Profunctor li-
brary:

class Profunctor p where

dimap :: (a -> b) -> (c -> d) -> p b c -> p a d
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dimap f g = lmap f . rmap g

lmap :: (a -> b) -> p b c -> p a c

lmap f = dimap f id

rmap :: (b -> c) -> p a b -> p a c

rmap = dimap id

All three functions come with default implementations. Just like with
Bifunctor, when declaring an instance of Profunctor, you have a choice
of either implementing dimap and accepting the defaults for lmap and
rmap, or implementing both lmap and rmap and accepting the default
for dimap.

dimap

Now we can assert that the function-arrow operator is an instance of
a Profunctor:

instance Profunctor (->) where

dimap ab cd bc = cd . bc . ab

lmap = flip (.)
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rmap = (.)

Profunctors have their application in the Haskell lens library. We’ll see
them again when we talk about ends and coends.

8.8 Challenges

1. Show that the data type:

data Pair a b = Pair a b

is a bifunctor. For additional credit implement all three meth-
ods of Bifunctor and use equational reasoning to show that
these definitions are compatible with the default implementa-
tions whenever they can be applied.

2. Show the isomorphism between the standard definition of Maybe
and this desugaring:

type Maybe' a = Either (Const () a) (Identity a)

Hint: Define two mappings between the two implementations.
For additional credit, show that they are the inverse of each other
using equational reasoning.

3. Let’s try another data structure. I call it a PreList because it’s a
precursor to a List. It replaces recursion with a type parameter
b.

data PreList a b = Nil | Cons a b

You could recover our earlier definition of a List by recursively
applying PreList to itself (we’ll see how it’s done when we talk
about fixed points).
Show that PreList is an instance of Bifunctor.
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4. Show that the following data types define bifunctors in a and b:

data K2 c a b = K2 c

data Fst a b = Fst a

data Snd a b = Snd b

For additional credit, check your solutions agains ConorMcBride’s
paper Clowns to the Left of me, Jokers to the Right.

5. Define a bifunctor in a language other than Haskell. Implement
bimap for a generic pair in that language.

6. Should std::map be considered a bifunctor or a profunctor in the
two template arguments Key and T? Howwould you redesign this
data type to make it so?
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9
Function Types

So far I’ve been glossing over the meaning of function types. A
function type is different from other types.

Hom-set in Set is just a set

Take Integer, for instance: It’s just
a set of integers. Bool is a two element
set. But a function type a->b is more than
that: it’s a set of morphisms between ob-
jects a and b. A set of morphisms be-
tween two objects in any category is
called a hom-set. It just so happens that
in the category Set every hom-set is itself
an object in the same category —because
it is, after all, a set.

The same is not true of other cate-
gories where hom-sets are external to a
category. They are even called external
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hom-sets.
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Hom-set in category C is an external
set

It’s the self-referential nature of the cat-
egory Set that makes function types spe-
cial. But there is a way, at least in some
categories, to construct objects that rep-
resent hom-sets. Such objects are called
internal hom-sets.

9.1 Universal Construction

Let’s forget for a moment that function
types are sets and try to construct a func-
tion type, or more generally, an inter-
nal hom-set, from scratch. As usual, we’ll
take our cues from the Set category, but carefully avoid using any prop-
erties of sets, so that the construction will automatically work for other
categories.

A function type may be considered a composite type because of its
relationship to the argument type and the result type. We’ve already
seen the constructions of composite types — those that involved rela-
tionships between objects. We used universal constructions to define a
product type and a coproduct types. We can use the same trick to de-
fine a function type. We will need a pattern that involves three objects:
the function type that we are constructing, the argument type, and the
result type.

The obvious pattern that connects these three types is called func-
tion application or evaluation. Given a candidate for a function type,
let’s call it z (notice that, if we are not in the category Set, this is just
an object like any other object), and the argument type a (an object),
the application maps this pair to the result type b (an object). We have
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In Set we can pick a function f from a set of functions z and we can pick an argument x from the
set (type) a. We get an element f x in the set (type) b.

three objects, two of them fixed (the ones representing the argument
type and the result type).

We also have the application, which is a mapping. How do we in-
corporate this mapping into our pattern? If we were allowed to look
inside objects, we could pair a function f (an element of z) with an ar-
gument x (an element of a) and map it to f x (the application of f to
x, which is an element of b).

But instead of dealing with individual pairs (f, x), we can as well
talk about the whole product of the function type z and the argument
type a. The product z×a is an object, and we can pick, as our application
morphism, an arrow g from that object to b. In Set, g would be the
function that maps every pair (f, x) to f x.

So that’s the pattern: a product of two objects z and a connected to
another object b by a morphism g.

Is this pattern specific enough to single out the function type using
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A pattern of objects and morphisms that is the starting point of the universal construction

a universal construction? Not in every category. But in the categories of
interest to us it is. And another question:Would it be possible to define a
function object without first defining a product?There are categories in
which there is no product, or there isn’t a product for all pairs of objects.
The answer is no: there is no function type, if there is no product type.
We’ll come back to this later when we talk about exponentials.

Let’s review the universal construction. We start with a pattern of
objects andmorphisms.That’s our imprecise query, and it usually yields
lots and lots of hits. In particular, in Set, pretty much everything is
connected to everything. We can take any object z, form its product
with a, and there’s going to be a function from it to b (except when b

is an empty set).
That’s when we apply our secret weapon: ranking. This is usually

done by requiring that there be a unique mapping between candidate
objects — a mapping that somehow factorizes our construction. In our
case, we’ll decree that z together with the morphism g from z×a to b

is better than some other z' with its own application g', if and only if
there is a unique mapping h from z' to z such that the application of
g' factors through the application of g. (Hint: Read this sentence while
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Establishing a ranking between candidates for the function object

looking at the picture.)
Now here’s the tricky part, and the main reason I postponed this

particular universal construction till now. Given the morphism
h :: z'-> z, we want to close the diagram that has both z' and z

crossed with a. What we really need, given the mapping h from z'

to z, is a mapping from z'×a to z×a. And now, after discussing the
functoriality of the product, we know how to do it. Because the product
itself is a functor (more precisely an endo-bi-functor), it’s possible to
lift pairs of morphisms. In other words, we can define not only products
of objects but also products of morphisms.

Since we are not touching the second component of the product
z'×a, we will lift the pair of morphisms (h, id), where id is an identity
on a.

So, here’s how we can factor one application, g, out of another ap-
plication g':

g' = g ◦ (h × id)
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The key here is the action of the product on morphisms.
The third part of the universal construction is selecting the object

that is universally the best. Let’s call this object a⇒b (think of this
as a symbolic name for one object, not to be confused with a Haskell
typeclass constraint — I’ll discuss different ways of naming it later).This
object comes with its own application — a morphism from (a⇒b)×a to
b — which we will call eval. The object a⇒b is the best if any other
candidate for a function object can be uniquely mapped to it in such
a way that its application morphism g factorizes through eval. This
object is better than any other object according to our ranking.

The definition of the universal function object. This is the same diagram as above, but now the
object a⇒b is universal.

Formally:
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A function object from a to b is an object a⇒b together with the
morphism

eval :: ((a⇒b) × a) -> b

such that for any other object z with a morphism

g :: z × a -> b

there is a unique morphism

h :: z -> (a⇒b)

that factors g through eval:

g = eval ◦ (h × id)

Of course, there is no guarantee that such an object a⇒b exists for any
pair of objects a and b in a given category. But it always does in Set.
Moreover, in Set, this object is isomorphic to the hom-set Set(a, b).

This is why, in Haskell, we interpret the function type a->b as the
categorical function object a⇒b.

9.2 Currying

Let’s have a second look at all the candidates for the function object.
This time, however, let’s think of the morphism g as a function of two
variables, z and a.
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g :: z × a -> b

Being a morphism from a product comes as close as it gets to being a
function of two variables. In particular, in Set, g is a function from pairs
of values, one from the set z and one from the set a.

On the other hand, the universal property tells us that for each such
g there is a unique morphism h that maps z to a function object a⇒b.

h :: z -> (a� b)

In Set, this just means that h is a function that takes one variable of
type z and returns a function from a to b. That makes h a higher order
function. Therefore the universal construction establishes a one-to-one
correspondence between functions of two variables and functions of
one variable returning functions. This correspondence is called curry-
ing, and h is called the curried version of g.

This correspondence is one-to-one, because given any g there is a
unique h, and given any h you can always recreate the two-argument
function g using the formula:

g = eval ◦ (h × id)

The function g can be called the uncurried version of h.
Currying is essentially built into the syntax of Haskell. A function

returning a function:

a -> (b -> c)

is often thought of as a function of two variables. That’s how we read
the un-parenthesized signature:
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a -> b -> c

This interpretation is apparent in the way we define multi-argument
functions. For instance:

catstr :: String -> String -> String

catstr s s' = s ++ s'

The same function can be written as a one-argument function returning
a function — a lambda:

catstr' s = \s' -> s ++ s'

These two definitions are equivalent, and either can be partially applied
to just one argument, producing a one-argument function, as in:

greet :: String -> String

greet = catstr "Hello "

Strictly speaking, a function of two variables is one that takes a pair (a
product type):

(a, b) -> c

It’s trivial to convert between the two representations, and the two
(higher-order) functions that do it are called, unsurprisingly, curry and
uncurry:

curry :: ((a, b)->c) -> (a->b->c)

curry f a b = f (a, b)

and
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uncurry :: (a->b->c) -> ((a, b)->c)

uncurry f (a, b) = f a b

Notice that curry is the factorizer for the universal construction of the
function object. This is especially apparent if it’s rewritten in this form:

factorizer :: ((a, b)->c) -> (a->(b->c))

factorizer g = \a -> (\b -> g (a, b))

(As a reminder: A factorizer produces the factorizing function from a
candidate.)

In non-functional languages, like C++, currying is possible but non-
trivial. You can think of multi-argument functions in C++ as corre-
sponding toHaskell functions taking tuples (although, to confuse things
evenmore, in C++ you can define functions that take an explicit std::tuple,
as well as variadic functions, and functions taking initializer lists).

You can partially apply a C++ function using the template std::bind.
For instance, given a function of two strings:

std::string catstr(std::string s1, std::string s2) {

return s1 + s2;

}

you can define a function of one string:

using namespace std::placeholders;

auto greet = std::bind(catstr, "Hello ", _1);

std::cout << greet("Haskell Curry");
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Scala, which is more functional than C++ or Java, falls somewhere in
between. If you anticipate that the function you’re defining will be par-
tially applied, you define it with multiple argument lists:

def catstr(s1: String)(s2: String) = s1 + s2

Of course that requires some amount of foresight or prescience on the
part of a library writer.

9.3 Exponentials

In mathematical literature, the function object, or the internal hom-
object between two objects a and b, is often called the exponential and
denoted by ba. Notice that the argument type is in the exponent. This
notation might seem strange at first, but it makes perfect sense if you
think of the relationship between functions and products. We’ve al-
ready seen that we have to use the product in the universal construc-
tion of the internal hom-object, but the connection goes deeper than
that.

This is best seen when you consider functions between finite types
— types that have a finite number of values, like Bool, Char, or even Int

or Double. Such functions, at least in principle, can be fully memoized
or turned into data structures to be looked up. And this is the essence of
the equivalence between functions, which are morphisms, and function
types, which are objects.

For instance a (pure) function from Bool is completely specified by
a pair of values: one corresponding to False, and one corresponding to
True. The set of all possible functions from Bool to, say, Int is the set
of all pairs of Ints. This is the same as the product Int × Int or, being
a little creative with notation, Int2.
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For another example, let’s look at the C++ type char, which con-
tains 256 values (Haskell Char is larger, because Haskell uses Unicode).
There are several functions in the part of the C++ Standard Library
that are usually implemented using lookups. Functions like isupper or
isspace are implemented using tables, which are equivalent to tuples
of 256 Boolean values. A tuple is a product type, so we are dealing with
products of 256 Booleans: bool × bool × bool × ... × bool.We know
from arithmetics that an iterated product defines a power. If you “mul-
tiply” bool by itself 256 (or char) times, you get bool to the power of
char, or boolchar.

How many values are there in the type defined as 256-tuples of
bool? Exactly 2256. This is also the number of different functions from
char to bool, each function corresponding to a unique 256-tuple. You
can similarly calculate that the number of functions from bool to char

is 2562, and so on. The exponential notation for function types makes
perfect sense in these cases.

We probably wouldn’t want to fully memoize a function from int

or double. But the equivalence between functions and data types, if
not always practical, is there. There are also infinite types, for instance
lists, strings, or trees. Eager memoization of functions from those types
would require infinite storage. But Haskell is a lazy language, so the
boundary between lazily evaluated (infinite) data structures and func-
tions is fuzzy. This function vs. data duality explains the identification
of Haskell’s function type with the categorical exponential object —
which corresponds more to our idea of data.

150



9.4 Cartesian Closed Categories

Although I will continue using the category of sets as a model for types
and functions, it’s worth mentioning that there is a larger family of
categories that can be used for that purpose.These categories are called
cartesian closed, and Set is just one example of such a category.

A cartesian closed category must contain:

1. The terminal object,
2. A product of any pair of objects, and
3. An exponential for any pair of objects.

If you consider an exponential as an iterated product (possibly infinitely
many times), then you can think of a cartesian closed category as one
supporting products of an arbitrary arity. In particular, the terminal
object can be thought of as a product of zero objects — or the zero-th
power of an object.

What’s interesting about cartesian closed categories from the per-
spective of computer science is that they provide models for the simply
typed lambda calculus, which forms the basis of all typed programming
languages.

The terminal object and the product have their duals: the initial
object and the coproduct. A cartesian closed category that also supports
those two, and in which product can be distributed over coproduct

a × (b + c) = a × b + a × c

(b + c) × a = b × a + c × a

is called a bicartesian closed category. We’ll see in the next section that
bicartesian closed categories, of which Set is a prime example, have
some interesting properties.
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9.5 Exponentials and Algebraic Data Types

The interpretation of function types as exponentials fits very well into
the scheme of algebraic data types. It turns out that all the basic iden-
tities from high-school algebra relating numbers zero and one, sums,
products, and exponentials hold prettymuch unchanged in any bicarte-
sian closed category theory for, respectively, initial and final objects,
coproducts, products, and exponentials. We don’t have the tools yet to
prove them (such as adjunctions or the Yoneda lemma), but I’ll list them
here nevertheless as a source of valuable intuitions.

9.5.1 Zeroth Power

a0 = 1

In the categorical interpretation, we replace 0 with the initial object, 1
with the final object, and equality with isomorphism.The exponential is
the internal hom-object. This particular exponential represents the set
of morphisms going from the initial object to an arbitrary object a. By
the definition of the initial object, there is exactly one such morphism,
so the hom-set C(0, a) is a singleton set. A singleton set is the terminal
object in Set, so this identity trivially works in Set. What we are saying
is that it works in any bicartesian closed category.

In Haskell, we replace 0 with Void; 1 with the unit type (); and the
exponential with function type. The claim is that the set of functions
from Void to any type a is equivalent to the unit type — which is a
singleton. In other words, there is only one function Void->a. We’ve
seen this function before: it’s called absurd.

This is a little bit tricky, for two reasons. One is that in Haskell we
don’t really have uninhabited types — every type contains the “result
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of a never ending calculation,” or the bottom. The second reason is that
all implementations of absurd are equivalent because, no matter what
they do, nobody can ever execute them. There is no value that can be
passed to absurd. (And if you manage to pass it a never ending calcu-
lation, it will never return!)

9.5.2 Powers of One

1a = 1

This identity, when interpreted in Set, restates the definition of the ter-
minal object: There is a unique morphism from any object to the ter-
minal object. In general, the internal hom-object from a to the terminal
object is isomorphic to the terminal object itself.

In Haskell, there is only one function from any type a to unit. We’ve
seen this function before — it’s called unit. You can also think of it as
the function const partially applied to ().

9.5.3 First Power

a1 = a

This is a restatement of the observation that morphisms from the ter-
minal object can be used to pick “elements” of the object a. The set of
such morphisms is isomorphic to the object itself. In Set, and in Haskell,
the isomorphism is between elements of the set a and functions that
pick those elements, ()->a.

9.5.4 Exponentials of Sums

ab+c = ab × ac
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Categorically, this says that the exponential from a coproduct of two
objects is isomorphic to a product of two exponentials. In Haskell, this
algebraic identity has a very practical, interpretation. It tells us that
a function from a sum of two types is equivalent to a pair of func-
tions from individual types. This is just the case analysis that we use
when defining functions on sums. Instead of writing one function def-
inition with a case statement, we usually split it into two (or more)
functions dealing with each type constructor separately. For instance,
take a function from the sum type (Either Int Double):

f :: Either Int Double -> String

It may be defined as a pair of functions from, respectively, Int and
Double:

f (Left n) = if n < 0 then "Negative int" else "Positive

int"↪

f (Right x) = if x < 0.0 then "Negative double" else

"Positive double"↪

Here, n is an Int and x is a Double.

9.5.5 Exponentials of Exponentials

(ab)c = ab×c

This is just a way of expressing currying purely in terms of exponential
objects. A function returning a function is equivalent to a function from
a product (a two-argument function).
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9.5.6 Exponentials over Products

(a × b)c = ac × bc

In Haskell: A function returning a pair is equivalent to a pair of func-
tions, each producing one element of the pair.

It’s pretty incredible how those simple high-school algebraic iden-
tities can be lifted to category theory and have practical application in
functional programming.

9.6 Curry-Howard Isomorphism

I have already mentioned the correspondence between logic and alge-
braic data types. The Void type and the unit type () correspond to false
and true. Product types and sum types correspond to logical conjunc-
tion ∧ (AND) and disjunction ∨ (OR). In this scheme, the function type
we have just defined corresponds to logical implication ⇒. In other
words, the type a->b can be read as “if a then b.”

According to the Curry-Howard isomorphism, every type can be
interpreted as a proposition — a statement or a judgment that may
be true or false. Such a proposition is considered true if the type is
inhabited and false if it isn’t. In particular, a logical implication is true
if the function type corresponding to it is inhabited, which means that
there exists a function of that type. An implementation of a function
is therefore a proof of a theorem. Writing programs is equivalent to
proving theorems. Let’s see a few examples.

Let’s take the function eval we have introduced in the definition
of the function object. Its signature is:

eval :: ((a -> b), a) -> b
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It takes a pair consisting of a function and its argument and produces
a result of the appropriate type. It’s the Haskell implementation of the
morphism:

eval :: (a⇒b) × a -> b

which defines the function type a⇒b (or the exponential object ba).
Let’s translate this signature to a logical predicate using the Curry-
Howard isomorphism:

((a ⇒ b) ∧ a) ⇒ b

Here’s how you can read this statement: If it’s true that b follows from
a, and a is true, then b must be true. This makes perfect intuitive sense
and has been known since antiquity as modus ponens. We can prove
this theorem by implementing the function:

eval :: ((a -> b), a) -> b

eval (f, x) = f x

If you give me a pair consisting of a function f taking a and returning b,
and a concrete value x of type a, I can produce a concrete value of type
b by simply applying the function f to x. By implementing this func-
tion I have just shown that the type ((a -> b), a) -> b is inhabited.
Therefore modus ponens is true in our logic.

How about a predicate that is blatantly false? For instance: if a or
b is true then a must be true.

a ∨ b ⇒ a
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This is obviously wrong because you can chose an a that is false and a
b that is true, and that’s a counter-example.

Mapping this predicate into a function signature using the Curry-
Howard isomorphism, we get:

Either a b -> a

Try as you may, you can’t implement this function — you can’t produce
a value of type a if you are called with the Right value. (Remember, we
are talking about pure functions.)

Finally, we come to the meaning of the absurd function:

absurd :: Void -> a

Considering that Void translates into false, we get:

false ⇒ a

Anything follows from falsehood (ex falso quodlibet). Here’s one pos-
sible proof (implementation) of this statement (function) in Haskell:

absurd (Void a) = absurd a

where Void is defined as:

newtype Void = Void Void

As always, the type Void is tricky. This definition makes it impossible
to construct a value because in order to construct one, you would need
to provide one. Therefore, the function absurd can never be called.

These are all interesting examples, but is there a practical side to
Curry-Howard isomorphism? Probably not in everyday programming.

157



But there are programming languages like Agda or Coq, which take
advantage of the Curry-Howard isomorphism to prove theorems.

Computers are not only helping mathematicians do their work —
they are revolutionizing the very foundations of mathematics. The lat-
est hot research topic in that area is called Homotopy Type Theory,
and is an outgrowth of type theory. It’s full of Booleans, integers, prod-
ucts and coproducts, function types, and so on. And, as if to dispel any
doubts, the theory is being formulated in Coq and Agda. Computers
are revolutionizing the world in more than one way.
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10
Natural Transformations

We talked about functors as mappings between categories that
preserve their structure.

A functor “embeds” one cat-
egory in another. It may col-
lapse multiple things into
one, but it never breaks con-
nections. One way of think-
ing about it is that with
a functor we are modeling
one category inside another.
The source category serves
as a model, a blueprint, for
some structure that’s part of
the target category.

Theremay bemanyways
of embedding one category in another. Sometimes they are equivalent,
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sometimes very different. One may collapse the whole source category
into one object, another may map every object to a different object
and every morphism to a different morphism. The same blueprint may
be realized in many different ways. Natural transformations help us
compare these realizations. They are mappings of functors — special
mappings that preserve their functorial nature.

Consider two functors F and G between categories C and D. If you
focus on just one object a in C, it is mapped to two objects: F a and G

a. A mapping of functors should therefore map F a to G a.

Notice that F a and G a are objects in the same category D. Mappings
between objects in the same category should not go against the grain
of the category. We don’t want to make artificial connections between
objects. So it’s natural to use existing connections, namely morphisms.
A natural transformation is a selection of morphisms: for every object
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a, it picks one morphism from F a to G a. If we call the natural trans-
formation α, this morphism is called the component of α at a, or αa.

αa :: F a -> G a

Keep in mind that a is an object in C while αa is a morphism in D.
If, for some a, there is no morphism between F a and G a inD, there

can be no natural transformation between F and G.
Of course that’s only half of the story, because functors not only

map objects, theymapmorphisms as well. So what does a natural trans-
formation do with those mappings? It turns out that the mapping of
morphisms is fixed — under any natural transformation between F and
G, F fmust be transformed into G f. What’s more, themapping of mor-
phisms by the two functors drastically restricts the choices we have in
defining a natural transformation that’s compatible with it. Consider
a morphism f between two objects a and b in C. It’s mapped to two
morphisms, F f and G f in D:

F f :: F a -> F b

G f :: G a -> G b

The natural transformation α provides
two additional morphisms that complete
the diagram in D:

αa :: F a -> G a

αb :: F b -> G b

Now we have two ways of getting from
F a to G b. To make sure that they are
equal, we must impose the naturality condition that holds for any f:
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G f ◦ αa = αb ◦ F f

The naturality condition is a pretty stringent requirement. For instance,
if the morphism F f is invertible, naturality determines αb in terms of
αa. It transports αa along f:

αb = (G f) ◦ αa ◦ (F f)-1

If there is more than one invertible mor-
phism between two objects, all these
transports have to agree. In general,
though, morphisms are not invertible;
but you can see that the existence of nat-
ural transformations between two func-
tors is far from guaranteed. So the
scarcity or the abundance of functors that are related by natural trans-
formations may tell you a lot about the structure of categories between
which they operate. We’ll see some examples of that when we talk
about limits and the Yoneda lemma.

Looking at a natural transformation component-wise, one may say
that it maps objects to morphisms. Because of the naturality condition,
one may also say that it maps morphisms to commuting squares —
there is one commuting naturality square in D for every morphism in
C.
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This property of natural transformations comes in very handy in a lot
of categorical constructions, which often include commuting diagrams.
With a judicious choice of functors, a lot of these commutativity condi-
tionsmay be transformed into naturality conditions.We’ll see examples
of that when we get to limits, colimits, and adjunctions.

Finally, natural transformationsmay be used to define isomorphisms
of functors. Saying that two functors are naturally isomorphic is almost
like saying they are the same. Natural isomorphism is defined as a natu-
ral transformation whose components are all isomorphisms (invertible
morphisms).

10.1 Polymorphic Functions

We talked about the role of functors (or, more specifically, endofunc-
tors) in programming. They correspond to type constructors that map
types to types. They also map functions to functions, and this mapping
is implemented by a higher order function fmap (or transform, then,
and the like in C++).

To construct a natural transformation we start with an object, here
a type, a. One functor, F, maps it to the type F a. Another functor, G,
maps it to G a. The component of a natural transformation alpha at a
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is a function from F a to G a. In pseudo-Haskell:

alphaa :: F a -> G a

A natural transformation is a polymorphic function that is defined for
all types a:

alpha :: forall a . F a -> G a

The forall a is optional in Haskell (and in fact requires turning on
the language extension ExplicitForAll). Normally, you would write
it like this:

alpha :: F a -> G a

Keep in mind that it’s really a family of functions parameterized by a.
This is another example of the terseness of the Haskell syntax. A similar
construct in C++ would be slightly more verbose:

template<class A> G<A> alpha(F<A>);

There is a more profound difference between Haskell’s polymorphic
functions and C++ generic functions, and it’s reflected in the way these
functions are implemented and type-checked. In Haskell, a polymor-
phic function must be defined uniformly for all types. One formula
must work across all types. This is called parametric polymorphism.

C++, on the other hand, supports by default ad hoc polymorphism,
which means that a template doesn’t have to be well-defined for all
types. Whether a template will work for a given type is decided at in-
stantiation time, where a concrete type is substituted for the type pa-
rameter. Type checking is deferred, which unfortunately often leads to
incomprehensible error messages.
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In C++, there is also a mechanism for function overloading and
template specialization, which allows different definitions of the same
function for different types. In Haskell this functionality is provided by
type classes and type families.

Haskell’s parametric polymorphism has an unexpected consequence:
any polymorphic function of the type:

alpha :: F a -> G a

where F and G are functors, automatically satisfies the naturality con-
dition. Here it is in categorical notation (f is a function f::a->b):

G f ◦ αa = αb ◦ F f

In Haskell, the action of a functor G on a morphism f is implemented
using fmap. I’ll first write it in pseudo-Haskell, with explicit type anno-
tations:

fmapG f . alphaa = alphab . fmapF f

Because of type inference, these annotations are not necessary, and the
following equation holds:

fmap f . alpha = alpha . fmap f

This is still not real Haskell — function equality is not expressible in
code — but it’s an identity that can be used by the programmer in equa-
tional reasoning; or by the compiler, to implement optimizations.

The reason why the naturality condition is automatic in Haskell
has to do with “theorems for free.” Parametric polymorphism, which is
used to define natural transformations in Haskell, imposes very strong
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limitations on the implementation — one formula for all types. These
limitations translate into equational theorems about such functions. In
the case of functions that transform functors, free theorems are the
naturality conditions.1

One way of thinking about functors in Haskell that I mentioned
earlier is to consider them generalized containers. We can continue this
analogy and consider natural transformations to be recipes for repack-
aging the contents of one container into another container. We are not
touching the items themselves: we don’t modify them, and we don’t
create new ones. We are just copying (some of) them, sometimes mul-
tiple times, into a new container.

The naturality condition becomes the statement that it doesn’t mat-
ter whether we modify the items first, through the application of fmap,
and repackage later; or repackage first, and then modify the items in
the new container, with its own implementation of fmap. These two ac-
tions, repackaging and fmapping, are orthogonal. “One moves the eggs,
the other boils them.”

Let’s see a few examples of natural transformations in Haskell. The
first is between the list functor, and the Maybe functor. It returns the
head of the list, but only if the list is non-empty:

safeHead :: [a] -> Maybe a

safeHead [] = Nothing

safeHead (x:xs) = Just x

It’s a function polymorphic in a. It works for any type a, with no limita-
tions, so it is an example of parametric polymorphism. Therefore it is a

1You may read more about free theorems in my blog Parametricity: Money for
Nothing and Theorems for Free.
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natural transformation between the two functors. But just to convince
ourselves, let’s verify the naturality condition.

fmap f . safeHead = safeHead . fmap f

We have two cases to consider; an empty list:

fmap f (safeHead []) = fmap f Nothing = Nothing

safeHead (fmap f []) = safeHead [] = Nothing

and a non-empty list:

fmap f (safeHead (x:xs)) = fmap f (Just x) = Just (f x)

safeHead (fmap f (x:xs)) = safeHead (f x : fmap f xs) = Just

(f x)↪

I used the implementation of fmap for lists:

fmap f [] = []

fmap f (x:xs) = f x : fmap f xs

and for Maybe:

fmap f Nothing = Nothing

fmap f (Just x) = Just (f x)

An interesting case is when one of the functors is the trivial Const
functor. A natural transformation from or to a Const functor looks just
like a function that’s either polymorphic in its return type or in its
argument type.

For instance, length can be thought of as a natural transformation
from the list functor to the Const Int functor:
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length :: [a] -> Const Int a

length [] = Const 0

length (x:xs) = Const (1 + unConst (length xs))

Here, unConst is used to peel off the Const constructor:

unConst :: Const c a -> c

unConst (Const x) = x

Of course, in practice length is defined as:

length :: [a] -> Int

which effectively hides the fact that it’s a natural transformation.
Finding a parametrically polymorphic function from a Const func-

tor is a little harder, since it would require the creation of a value from
nothing. The best we can do is:

scam :: Const Int a -> Maybe a

scam (Const x) = Nothing

Another common functor that we’ve seen already, and which will play
an important role in the Yoneda lemma, is the Reader functor. I will
rewrite its definition as a newtype:

newtype Reader e a = Reader (e -> a)

It is parameterized by two types, but is (covariantly) functorial only in
the second one:

instance Functor (Reader e) where

fmap f (Reader g) = Reader (\x -> f (g x))
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For every type e, you can define a family of natural transformations
from Reader e to any other functor f. We’ll see later that the mem-
bers of this family are always in one to one correspondence with the
elements of f e (the Yoneda lemma).

For instance, consider the somewhat trivial unit type () with one
element (). The functor Reader () takes any type a and maps it into a
function type ()->a. These are just all the functions that pick a single
element from the set a. There are as many of these as there are elements
in a. Now let’s consider natural transformations from this functor to the
Maybe functor:

alpha :: Reader () a -> Maybe a

There are only two of these, dumb and obvious:

dumb (Reader _) = Nothing

and

obvious (Reader g) = Just (g ())

(The only thing you can do with g is to apply it to the unit value ().)
And, indeed, as predicted by the Yoneda lemma, these correspond

to the two elements of the Maybe () type, which are Nothing and Just

(). We’ll come back to the Yoneda lemma later — this was just a little
teaser.

10.2 Beyond Naturality

A parametrically polymorphic function between two functors (includ-
ing the edge case of the Const functor) is always a natural transforma-
tion. Since all standard algebraic data types are functors, any polymor-
phic function between such types is a natural transformation.
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We also have function types at our disposal, and those are functorial
in their return type. We can use them to build functors (like the Reader
functor) and define natural transformations that are higher-order func-
tions.

However, function types are not covariant in the argument type.
They are contravariant. Of course contravariant functors are equiva-
lent to covariant functors from the opposite category. Polymorphic
functions between two contravariant functors are still natural trans-
formations in the categorical sense, except that they work on functors
from the opposite category to Haskell types.

You might remember the example of a contravariant functor we’ve
looked at before:

newtype Op r a = Op (a -> r)

This functor is contravariant in a:

instance Contravariant (Op r) where

contramap f (Op g) = Op (g . f)

We can write a polymorphic function from, say, Op Bool to Op String:

predToStr (Op f) = Op (\x -> if f x then "T" else "F")

But since the two functors are not covariant, this is not a natural trans-
formation in Hask. However, because they are both contravariant, they
satisfy the “opposite” naturality condition:

contramap f . predToStr = predToStr . contramap f

Notice that the function f must go in the opposite direction than what
you’d use with fmap, because of the signature of contramap:
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contramap :: (b -> a) -> (Op Bool a -> Op Bool b)

Are there any type constructors that are not functors, whether covari-
ant or contravariant? Here’s one example:

a -> a

This is not a functor because the same type a is used both in the negative
(contravariant) and positive (covariant) position. You can’t implement
fmap or contramap for this type. Therefore a function of the signature:

(a -> a) -> f a

where f is an arbitrary functor, cannot be a natural transformation.
Interestingly, there is a generalization of natural transformations, called
dinatural transformations, that deals with such cases. We’ll get to them
when we discuss ends.

10.3 Functor Category

Now that we have mappings between functors — natural transforma-
tions — it’s only natural to ask the question whether functors form a
category. And indeed they do! There is one category of functors for
each pair of categories, C and D. Objects in this category are functors
from C to D, and morphisms are natural transformations between those
functors.

We have to define composition of two natural transformations, but
that’s quite easy. The components of natural transformations are mor-
phisms, and we know how to compose morphisms.

Indeed, let’s take a natural transformation α from functor F to G.
Its component at object a is some morphism:
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αa :: F a -> G a

We’d like to compose α with β, which is a natural transformation from
functor G to H. The component of β at a is a morphism:

βa :: G a -> H a

These morphisms are composable and their composition is another
morphism:

βa ◦ αa :: F a -> H a

We will use this morphism as the component of the natural transfor-
mation β ⋅ α — the composition of two natural transformations β after
α:

(β ⋅ α)a = βa ◦ αa

One (long) look at a diagram convinces us that the result of this com-
position is indeed a natural transformation from F to H:
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H f ◦ (β ⋅ α)a = (β ⋅ α)b ◦ F f

Composition of natural transformations is associative, because their
components, which are regular morphisms, are associative with respect
to their composition.

Finally, for each functor F there is an identity natural transforma-
tion 1F whose components are the identity morphisms:

idF a :: F a -> F a

So, indeed, functors form a category.
A word about notation. Following Saunders Mac Lane I use the

dot for the kind of natural transformation composition I have just de-
scribed. The problem is that there are two ways of composing natural
transformations.This one is called the vertical composition, because the
functors are usually stacked up vertically in the diagrams that describe
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it. Vertical composition is important in defining the functor category.
I’ll explain horizontal composition shortly.

The functor category between categories C and D is written as
Fun(C, D), or [C, D], or sometimes as DC. This last notation suggests
that a functor category itself might be considered a function object (an
exponential) in some other category. Is this indeed the case?

Let’s have a look at the hierarchy of abstractions that we’ve been
building so far. We started with a category, which is a collection of ob-
jects and morphisms. Categories themselves (or, strictly speaking small
categories, whose objects form sets) are themselves objects in a higher-
level category Cat. Morphisms in that category are functors. A Hom-set
in Cat is a set of functors. For instance Cat(C, D) is a set of functors be-
tween two categories C and D.

A functor category [C, D] is also a set of functors between two
categories (plus natural transformations as morphisms). Its objects are
the same as the members of Cat(C, D). Moreover, a functor category,
being a category, must itself be an object of Cat (it so happens that the
functor category between two small categories is itself small). We have
a relationship between a Hom-set in a category and an object in the
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same category. The situation is exactly like the exponential object that
we’ve seen in the last section. Let’s see how we can construct the latter
in Cat.

As you may remember, in order to construct an exponential, we
need to first define a product. In Cat, this turns out to be relatively easy,
because small categories are sets of objects, and we know how to define
cartesian products of sets. So an object in a product category C × D is
just a pair of objects, (c, d), one from C and one from D. Similarly,
a morphism between two such pairs, (c, d) and (c', d'), is a pair
of morphisms, (f, g), where f :: c -> c' and g :: d -> d'. These
pairs of morphisms compose component-wise, and there is always an
identity pair that is just a pair of identity morphisms. To make the long
story short, Cat is a full-blown cartesian closed category in which there
is an exponential object DC for any pair of categories. And by “object”
in Cat I mean a category, so DC is a category, which we can identify
with the functor category between C and D.
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10.4 2-Categories

With that out of the way, let’s have a closer look at Cat. By definition,
any Hom-set in Cat is a set of functors. But, as we have seen, functors
between two objects have a richer structure than just a set. They form
a category, with natural transformations acting as morphisms. Since
functors are considered morphisms in Cat, natural transformations are
morphisms between morphisms.

This richer structure is an example of a 2-category, a generalization
of a category where, besides objects and morphisms (which might be
called 1-morphisms in this context), there are also 2-morphisms, which
are morphisms between morphisms.

In the case of Cat seen as a 2-category we have:

• Objects: (Small) categories
• 1-morphisms: Functors between categories
• 2-morphisms: Natural transformations between functors.

Instead of a Hom-set between
two categories C and D, we
have a Hom-category — the
functor category DC. We have
regular functor composition:
a functor F from DC composes
with a functor G from ED to
give G ∘ F from EC. But we
also have composition inside
each Hom-category — vertical
composition of natural trans-
formations, or 2-morphisms, between functors.
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With two kinds of composition in a 2-category, the question arises:
How do they interact with each other?

Let’s pick two functors, or 1-morphisms, in Cat:

F :: C -> D

G :: D -> E

and their composition:

G ◦ F :: C -> E

Suppose we have two natural transformations, α and β, that act, re-
spectively, on functors F and G:

α :: F -> F'

β :: G -> G'

Notice that we cannot apply vertical composition to this pair, because
the target of α is different from the source of β. In fact they are members
of two different functor categories: D C and E D. We can, however, apply
composition to the functors F’ and G’, because the target of F’ is the
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source of G’ — it’s the category D. What’s the relation between the
functors G’∘ F’ and G ∘ F?

Having α and β at our disposal, can we define a natural transfor-
mation from G ∘ F to G’∘ F’? Let me sketch the construction.

As usual, we start with an object a in C. Its image splits into two ob-
jects in D: F a and F'a. There is also a morphism, a component of α,
connecting these two objects:

αa :: F a -> F'a

When going from D to E, these two objects split further into four ob-
jects:

G (F a), G'(F a), G (F'a), G'(F'a)
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We also have four morphisms forming a square. Two of these mor-
phisms are the components of the natural transformation β:

βF a :: G (F a) -> G'(F a)

βF’a :: G (F'a) -> G'(F'a)

The other two are the images of αa under the two functors (functors
map morphisms):

G αa :: G (F a) -> G (F'a)

G'αa :: G'(F a) -> G'(F'a)

That’s a lot of morphisms. Our goal is to find a morphism that goes
from G (F a) to G'(F'a), a candidate for the component of a natural
transformation connecting the two functors G ∘ F and G’∘ F’. In fact
there’s not one but two paths we can take from G (F a) to G'(F'a):

G'αa ◦ βF a
βF’a ◦ G αa

Luckily for us, they are equal, because the square we have formed turns
out to be the naturality square for β.

We have just defined a component of a natural transformation from
G ∘ F to G’∘ F’. The proof of naturality for this transformation is pretty
straightforward, provided you have enough patience.

We call this natural transformation the horizontal composition of α
and β:

β ◦ α :: G ◦ F -> G' ◦ F'
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Again, following Mac Lane I use the small circle for horizontal compo-
sition, although you may also encounter star in its place.

Here’s a categorical rule of thumb: Every time you have composi-
tion, you should look for a category. We have vertical composition of
natural transformations, and it’s part of the functor category. But what
about the horizontal composition? What category does that live in?

Theway to figure this out is to look at Cat sideways. Look at natural
transformations not as arrows between functors but as arrows between
categories. A natural transformation sits between two categories, the
ones that are connected by the functors it transforms. We can think of
it as connecting these two categories.

Let’s focus on two objects of Cat— categories C and D. There is a set of
natural transformations that go between functors that connect C to D.
These natural transformations are our new arrows from C to D. By the
same token, there are natural transformations going between functors
that connect D to E, which we can treat as new arrows going from D
to E. Horizontal composition is the composition of these arrows.

We also have an identity arrow going from C to C. It’s the identity
natural transformation that maps the identity functor on C to itself.
Notice that the identity for horizontal composition is also the identity
for vertical composition, but not vice versa.

Finally, the two compositions satisfy the interchange law:

(β' � α') � (β � α) = (β' � β) � (α' � α)
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I will quote Saunders Mac Lane here: The reader may enjoy writing
down the evident diagrams needed to prove this fact.

There is one more piece of notation that might come in handy in
the future. In this new sideways interpretation of Cat there are two
ways of getting from object to object: using a functor or using a natu-
ral transformation. We can, however, re-interpret the functor arrow as
a special kind of natural transformation: the identity natural transfor-
mation acting on this functor. So you’ll often see this notation:

F ◦ α

where F is a functor from D to E, and α is a natural transformation
between two functors going from C to D. Since you can’t compose a
functor with a natural transformation, this is interpreted as a horizontal
composition of the identity natural transformation 1F after α.

Similarly:

α ◦ F

is a horizontal composition of α after 1F.

10.5 Conclusion

This concludes the first part of the book. We’ve learned the basic vo-
cabulary of category theory. You may think of objects and categories as
nouns; and morphisms, functors, and natural transformations as verbs.
Morphisms connect objects, functors connect categories, natural trans-
formations connect functors.

But we’ve also seen that, what appears as an action at one level of
abstraction, becomes an object at the next level. A set of morphisms
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turns into a function object. As an object, it can be a source or a target
of another morphism. That’s the idea behind higher order functions.

A functor maps objects to objects, so we can use it as a type con-
structor, or a parametric type. A functor also maps morphisms, so it is
a higher order function — fmap. There are some simple functors, like
Const, product, and coproduct, that can be used to generate a large va-
riety of algebraic data types. Function types are also functorial, both
covariant and contravariant, and can be used to extend algebraic data
types.

Functors may be looked upon as objects in the functor category.
As such, they become sources and targets of morphisms: natural trans-
formations. A natural transformation is a special type of polymorphic
function.

10.6 Challenges

1. Define a natural transformation from the Maybe functor to the
list functor. Prove the naturality condition for it.

2. Define at least two different natural transformations between
Reader () and the list functor. How many different lists of ()

are there?
3. Continue the previous exercise with Reader Bool and Maybe.
4. Show that horizontal composition of natural transformation sat-

isfies the naturality condition (hint: use components). It’s a good
exercise in diagram chasing.

5. Write a short essay about how you may enjoy writing down the
evident diagrams needed to prove the interchange law.

6. Create a few test cases for the opposite naturality condition of
transformations between different Op functors. Here’s one choice:
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op :: Op Bool Int

op = Op (\x -> x > 0)

and

f :: String -> Int

f x = read x
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