Category Theory
for Programmers

Iy
g
Z

Bartosz Milewski

X

Category Theory for Programmers

Bartosz Milewski

Version 0.1, September 2017

@O0

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License
(cc BY-sA 4.0).

Converted to LaTeX from a series of blog posts by Bartosz Milewski.
PDF compiled by Igal Tabachnik.

http://creativecommons.org/licenses/by-sa/4.0/
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/
https://github.com/hmemcpy/milewski-ctfp-pdf

Contents

Preface

I Part One

1 Category: The Essence of Composition

1.0.1
1.0.2
1.0.3
1.0.4

Arrows as Functions
Properties of Composition
Composition is the Essence of Programming

Challenges

2 Types and Functions

2.0.1
2.0.2
2.0.3
2.04
2.0.5
2.0.6
2.0.7

Why Do We Need a Mathematical Model? . . .
Pure and Dirty Functions
Examplesof Types
Challenges

iii

o U1 NN

3 Categories Great and Small

3.0.1
3.0.2
3.0.3
3.0.4
3.0.5
3.0.6
3.0.7

No Objects
Simple Graphs
Orders
MonoidasSet L.
Monoid as Category
Acknowledgments
Challenges

4 Kleisli Categories

4.0.1
4.0.2
4.0.3
4.0.4
4.0.5

The Writer Category
Writer in Haskell
Kleisli Categories
Challenge
Acknowledgments

5 Products and Coproducts

5.0.1
5.0.2
5.0.3
5.0.4
5.0.5
5.0.6
5.0.7
5.0.8
5.0.9
5.0.10

Initial Object
Terminal Object
Duality
Isomorphisms
Products
Coproduct
Asymmetry
Challenges
Bibliography
Acknowledments L.

iv

27
27
27
28
29
33
37
37

Preface

For some time now I've been floating the idea of writing
a book about category theory that would be targeted at
programmers. Mind you, not computer scientists but pro-
grammers — engineers rather than scientists. I know this
sounds crazy and I am properly scared. I can’t deny that
there is a huge gap between science and engineering be-
cause I have worked on both sides of the divide. But I've al-
ways felt a very strong compulsion to explain things. I have
tremendous admiration for Richard Feynman who was the
master of simple explanations. I know I'm no Feynman,
but I will try my best. 'm starting by publishing this pref-
ace — which is supposed to motivate the reader to learn
category theory — in hopes of starting a discussion and
soliciting feedback.’

WILL ATTEMPT, in the space of a few paragraphs, to convince you

that this book is written for you, and whatever objections you might
have to learning one of the most abstract branches of mathematics in
your “copious spare time” are totally unfounded.

You may also watch me teaching this material to a live audience.

https://www.youtube.com/playlist?list=PLbgaMIhjbmEnaH_LTkxLI7FMa2HsnawM_

My optimism is based on several observations. First, category the-
ory is a treasure trove of extremely useful programming ideas. Haskell
programmers have been tapping this resource for a long time, and the
ideas are slowly percolating into other languages, but this process is
too slow. We need to speed it up.

Second, there are many different kinds of math, and they appeal to
different audiences. You might be allergic to calculus or algebra, but it
doesn’t mean you won’t enjoy category theory. I would go as far as to
argue that category theory is the kind of math that is particularly well
suited for the minds of programmers. That’s because category theory
— rather than dealing with particulars — deals with structure. It deals
with the kind of structure that makes programs composable.

Composition is at the very root of category theory — it’s part of the
definition of the category itself. And I will argue strongly that compo-
sition is the essence of programming. We’ve been composing things
forever, long before some great engineer came up with the idea of a
subroutine. Some time ago the principles of structural programming
revolutionized programming because they made blocks of code com-
posable. Then came object oriented programming, which is all about
composing objects. Functional programming is not only about com-
posing functions and algebraic data structures — it makes concurrency
composable — something that’s virtually impossible with other pro-
gramming paradigms.

Third, I have a secret weapon, a butcher’s knife, with which I will
butcher math to make it more palatable to programmers. When you’re
a professional mathematician, you have to be very careful to get all
your assumptions straight, qualify every statement properly, and con-
struct all your proofs rigorously. This makes mathematical papers and
books extremely hard to read for an outsider. 'm a physicist by train-

vi

ing, and in physics we made amazing advances using informal reason-
ing. Mathematicians laughed at the Dirac delta function, which was
made up on the spot by the great physicist P. A. M. Dirac to solve some
differential equations. They stopped laughing when they discovered a
completely new branch of calculus called distribution theory that for-
malized Dirac’s insights.

Of course when using hand-waving arguments you run the risk of
saying something blatantly wrong, so I will try to make sure that there
is solid mathematical theory behind informal arguments in this book.
I do have a worn-out copy of Saunders Mac Lane’s Category Theory for
the Working Mathematician on my nightstand.

Since this is category theory for programmersIwill illustrate all ma-
jor concepts using computer code. You are probably aware that func-
tional languages are closer to math than the more popular imperative
languages. They also offer more abstracting power. So a natural temp-
tation would be to say: You must learn Haskell before the bounty of cat-
egory theory becomes available to you. But that would imply that cate-
gory theory has no application outside of functional programming and
that’s simply not true. So I will provide a lot of C++ examples. Granted,
you’ll have to overcome some ugly syntax, the patterns might not stand
out from the background of verbosity, and you might be forced to do
some copy and paste in lieu of higher abstraction, but that’s just the lot
of a C++ programmer.

But you’re not off the hook as far as Haskell is concerned. You don’t
have to become a Haskell programmer, but you need it as a language
for sketching and documenting ideas to be implemented in C++. That’s
exactly how I got started with Haskell. I found its terse syntax and pow-
erful type system a great help in understanding and implementing C++
templates, data structures, and algorithms. But since I can’t expect the

vii

readers to already know Haskell, I will introduce it slowly and explain
everything as I go.

If you're an experienced programmer, you might be asking your-
self: 've been coding for so long without worrying about category the-
ory or functional methods, so what’s changed? Surely you can’t help
but notice that there’s been a steady stream of new functional fea-
tures invading imperative languages. Even Java, the bastion of object-
oriented programming, let the lambdas in C++ has recently been evolv-
ing at a frantic pace — a new standard every few years — trying to
catch up with the changing world. All this activity is in preparation for
a disruptive change or, as we physicist call it, a phase transition. If you
keep heating water, it will eventually start boiling. We are now in the
position of a frog that must decide if it should continue swimming in
increasingly hot water, or start looking for some alternatives.

One of the forces that are driving the big change is the multicore

viii

revolution. The prevailing programming paradigm, object oriented pro-
gramming, doesn’t buy you anything in the realm of concurrency and
parallelism, and instead encourages dangerous and buggy design. Data
hiding, the basic premise of object orientation, when combined with
sharing and mutation, becomes a recipe for data races. The idea of
combining a mutex with the data it protects is nice but, unfortunately,
locks don’t compose, and lock hiding makes deadlocks more likely and
harder to debug.

But even in the absence of concurrency, the growing complexity
of software systems is testing the limits of scalability of the impera-
tive paradigm. To put it simply, side effects are getting out of hand.
Granted, functions that have side effects are often convenient and easy
to write. Their effects can in principle be encoded in their names and
in the comments. A function called SetPassword or WriteFile is obvi-
ously mutating some state and generating side effects, and we are used
to dealing with that. It’s only when we start composing functions that
have side effects on top of other functions that have side effects, and
so on, that things start getting hairy. It’s not that side effects are in-
herently bad — it’s the fact that they are hidden from view that makes
them impossible to manage at larger scales. Side effects don’t scale, and
imperative programming is all about side effects.

Changes in hardware and the growing complexity of software are
forcing us to rethink the foundations of programming. Just like the
builders of Europe’s great gothic cathedrals we’ve been honing our
craft to the limits of material and structure. There is an unfinished
gothic cathedral in Beauvais, France, that stands witness to this deeply
human struggle with limitations. It was intended to beat all previous
records of height and lightness, but it suffered a series of collapses. Ad
hoc measures like iron rods and wooden supports keep it from disinte-

ix

http://en.wikipedia.org/wiki/Beauvais_Cathedral

Ad hoc measures preventing the Beauvais cathedral from collapsing.

grating, but obviously a lot of things went wrong. From a modern per-
spective, it’s a miracle that so many gothic structures had been success-
fully completed without the help of modern material science, computer
modelling, finite element analysis, and general math and physics. Thope
future generations will be as admiring of the programming skills we’ve
been displaying in building complex operating systems, web servers,
and the internet infrastructure. And, frankly, they should, because we’ve
done all this based on very flimsy theoretical foundations. We have to
fix those foundations if we want to move forward.

Part I

Part One

Category: The Essence of Composition

CATEGORY is an embarrassingly simple concept. A category con-

sists of objects and arrows that go between them. That’s why cate-
gories are so easy to represent pictorially. An object can be drawn as
a circle or a point, and an arrow... is an arrow. (Just for variety, I will
occasionally draw objects as piggies and arrows as fireworks.) But the
essence of a category is composition. Or, if you prefer, the essence of
composition is a category. Arrows compose, so if you have an arrow
from object A to object B, and another arrow from object B to object
C, then there must be an arrow — their composition — that goes from
AtoC.

Arrows as Functions

Is this already too much abstract nonsense? Do not despair. Let’s talk
concretes. Think of arrows, which are also called morphisms, as func-
tions. You have a function f that takes an argument of type A and
returns a B. You have another function g that takes a B and returns a

In a category, if there is an arrow going from A to B and an arrow going from B to C then there
must also be a direct arrow from A to C that is their composition. This diagram is not a full
category because it’s missing identity morphisms (see later).

C. You can compose them by passing the result of f to g. You have just
defined a new function that takes an A and returns a C.

In math, such composition is denoted by a small circle between
functions: g o f. Notice the right to left order of composition. For some
people this is confusing. You may be familiar with the pipe notation in
Unix, as in:

lsof | grep Chrome

or the chevron >> in F#, which both go from left to right. But in
mathematics and in Haskell functions compose right to left. It helps if
you read gof as “g after {7

Let’s make this even more explicit by writing some C code. We have
one function f that takes an argument of type A and returns a value of

type B:

B f(A a);

and another:
C g(B b);
Their composition is:

C g_after_f(A a)

{
return g(f(a));

Here, again, you see right-to-left composition: g(f(a)); this time
in C.

I wish I could tell you that there is a template in the C++ Stan-
dard Library that takes two functions and returns their composition,
but there isn’t one. So let’s try some Haskell for a change. Here’s the
declaration of a function from A to B:

f:: A->B
Similarly:
g::B->C

Their composition is:

g . f

Once you see how simple things are in Haskell, the inability to
express straightforward functional concepts in C++ is a little embar-
rassing. In fact, Haskell will let you use Unicode characters so you can
write composition as:

g f
You can even use Unicode double colons and arrows:
f@:A->B

So here’s the first Haskell lesson: Double colon means “has the type
of..” A function type is created by inserting an arrow between two
types. You compose two functions by inserting a period between them
(or a Unicode circle).

Properties of Composition

There are two extremely important properties that the composition in
any category must satisfy.

1. Composition is associative. If you have three morphisms, f, g, and
h, that can be composed (that is, their objects match end-to-end),
you don’t need parentheses to compose them. In math notation
this is expressed as:

ho(gef) = (heg)ef = hegef

In (pseudo) Haskell:

f:: A->B

g :: B->C

h::C->D
h.(g.f)==(.g .f==h.g.f

(I said “pseudo,” because equality is not defined for functions.)

Associativity is pretty obvious when dealing with functions, but
it may be not as obvious in other categories.

2. For every object A there is an arrow which is a unit of compo-
sition. This arrow loops from the object to itself. Being a unit of
composition means that, when composed with any arrow that ei-
ther starts at A or ends at A, respectively, it gives back the same
arrow. The unit arrow for object A is called id, (identity on A).
In math notation, if f goes from A to B then

foid, = f
and
idgef = f

When dealing with functions, the identity arrow is implemented
as the identity function that just returns back its argument. The im-
plementation is the same for every type, which means this function is
universally polymorphic. In C++ we could define it as a template:

template<class T> T id(T x) { return x; }

Of course, in C++ nothing is that simple, because you have to take
into account not only what you’re passing but also how (that is, by
value, by reference, by const reference, by move, and so on).

In Haskell, the identity function is part of the standard library (called
Prelude). Here’s its declaration and definition:

id :: a -> a
id x = x

As you can see, polymorphic functions in Haskell are a piece of
cake. In the declaration, you just replace the type with a type variable.
Here’s the trick: names of concrete types always start with a capital

letter, names of type variables start with a lowercase letter. So here a
stands for all types.

Haskell function definitions consist of the name of the function fol-
lowed by formal parameters — here just one, x. The body of the function
follows the equal sign. This terseness is often shocking to newcomers
but you will quickly see that it makes perfect sense. Function definition
and function call are the bread and butter of functional programming
so their syntax is reduced to the bare minimum. Not only are there no
parentheses around the argument list but there are no commas between
arguments (you’ll see that later, when we define functions of multiple
arguments).

The body of a function is always an expression — there are no state-
ments in functions. The result of a function is this expression — here,
just x.

This concludes our second Haskell lesson.

The identity conditions can be written (again, in pseudo-Haskell)

as:
f.id==f
id . f==f

You might be asking yourself the question: Why would anyone
bother with the identity function — a function that does nothing? Then
again, why do we bother with the number zero? Zero is a symbol for
nothing. Ancient Romans had a number system without a zero and
they were able to build excellent roads and aqueducts, some of which
survive to this day.

Neutral values like zero or id are extremely useful when working
with symbolic variables. That’s why Romans were not very good at al-
gebra, whereas the Arabs and the Persians, who were familiar with the

concept of zero, were. So the identity function becomes very handy as
an argument to, or a return from, a higher-order function. Higher order
functions are what make symbolic manipulation of functions possible.
They are the algebra of functions.

To summarize: A category consists of objects and arrows (mor-
phisms). Arrows can be composed, and the composition is associative.
Every object has an identity arrow that serves as a unit under compo-
sition.

Composition is the Essence of Programming

Functional programmers have a peculiar way of approaching problems.
They start by asking very Zen-like questions. For instance, when de-
signing an interactive program, they would ask: What is interaction?
When implementing Conway’s Game of Life, they would probably pon-
der about the meaning of life. In this spirit, I'm going to ask: What is
programming? At the most basic level, programming is about telling
the computer what to do. “Take the contents of memory address x and
add it to the contents of the register EAX” But even when we program
in assembly, the instructions we give the computer are an expression of
something more meaningful. We are solving a non-trivial problem (if
it were trivial, we wouldn’t need the help of the computer). And how
do we solve problems? We decompose bigger problems into smaller
problems. If the smaller problems are still too big, we decompose them
further, and so on. Finally, we write code that solves all the small prob-
lems. And then comes the essence of programming: we compose those
pieces of code to create solutions to larger problems. Decomposition
wouldn’t make sense if we weren’t able to put the pieces back together.

This process of hierarchical decomposition and recomposition is
not imposed on us by computers. It reflects the limitations of the human

mind. Our brains can only deal with a small number of concepts at a
time. One of the most cited papers in psychology, The Magical Number
Seven, Plus or Minus Two, postulated that we can only keep 7 + 2
“chunks” of information in our minds. The details of our understanding
of the human short-term memory might be changing, but we know for
sure that it’s limited. The bottom line is that we are unable to deal with
the soup of objects or the spaghetti of code. We need structure not
because well-structured programs are pleasant to look at, but because
otherwise our brains can’t process them efficiently. We often describe
some piece of code as elegant or beautiful, but what we really mean
is that it’s easy to process by our limited human minds. Elegant code
creates chunks that are just the right size and come in just the right
number for our mental digestive system to assimilate them.

So what are the right chunks for the composition of programs?
Their surface area has to increase slower than their volume. (I like this
analogy because of the intuition that the surface area of a geometric ob-
ject grows with the square of its size — slower than the volume, which
grows with the cube of its size.) The surface area is the information we
need in order to compose chunks. The volume is the information we
need in order to implement them. The idea is that, once a chunk is im-
plemented, we can forget about the details of its implementation and
concentrate on how it interacts with other chunks. In object-oriented
programming, the surface is the class declaration of the object, or its
abstract interface. In functional programming, it’s the declaration of a
function. (I'm simplifying things a bit, but that’s the gist of it.)

Category theory is extreme in the sense that it actively discourages
us from looking inside the objects. An object in category theory is an
abstract nebulous entity. All you can ever know about it is how it re-
lates to other object — how it connects with them using arrows. This is

http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

how internet search engines rank web sites by analyzing incoming and
outgoing links (except when they cheat). In object-oriented program-
ming, an idealized object is only visible through its abstract interface
(pure surface, no volume), with methods playing the role of arrows.
The moment you have to dig into the implementation of the object in
order to understand how to compose it with other objects, you’ve lost
the advantages of your programming paradigm.

Challenges

1. Implement, as best as you can, the identity function in your fa-
vorite language (or the second favorite, if your favorite language
happens to be Haskell).

2. Implement the composition function in your favorite language.
It takes two functions as arguments and returns a function that
is their composition.

3. Write a program that tries to test that your composition function
respects identity.

4. Is the world-wide web a category in any sense? Are links mor-
phisms?

5. Is Facebook a category, with people as objects and friendships as
morphisms?

6. When is a directed graph a category?

10

Types and Functions

HE CATEGORY OF TYPES AND FUNCTIONS plays an important role
in programming, so let’s talk about what types are and why we
need them.

Who Needs Types?

There seems to be some controversy about the advantages of static vs.
dynamic and strong vs. weak typing. Let me illustrate these choices
with a thought experiment. Imagine millions of monkeys at computer
keyboards happily hitting random keys, producing programs, compil-
ing, and running them.

With machine language, any combination of bytes produced by
monkeys would be accepted and run. But with higher level languages,
we do appreciate the fact that a compiler is able to detect lexical and
grammatical errors. Lots of monkeys will go without bananas, but the
remaining programs will have a better chance of being useful. Type
checking provides yet another barrier against nonsensical programs.

11

Moreover, whereas in a dynamically typed language, type mismatches
would be discovered at runtime, in strongly typed statically checked
languages type mismatches are discovered at compile time, eliminat-
ing lots of incorrect programs before they have a chance to run.

So the question is, do we want to make monkeys happy, or do we
want to produce correct programs?

The usual goal in the typing monkeys thought experiment is the
production of the complete works of Shakespeare. Having a spell checker
and a grammar checker in the loop would drastically increase the odds.
The analog of a type checker would go even further by making sure
that, once Romeo is declared a human being, he doesn’t sprout leaves
or trap photons in his powerful gravitational field.

12

Types Are About Composability

Category theory is about composing arrows. But not any two arrows
can be composed. The target object of one arrow must be the same
as the source source object of the next arrow. In programming we pass
the results on one function to another. The program will not work if the
target function is not able to correctly interpret the data produced by
the source function. The two ends must fit for the composition to work.
The stronger the type system of the language, the better this match can
be described and mechanically verified.

The only serious argument I hear against strong static type check-
ing is that it might eliminate some programs that are semantically cor-
rect. In practice, this happens extremely rarely and, in any case, every
language provides some kind of a backdoor to bypass the type sys-
tem when that’s really necessary. Even Haskell has unsafeCoerce. But
such devices should be used judiciously. Franz Kaftka’s character, Gre-
gor Samsa, breaks the type system when he metamorphoses into a giant
bug, and we all know how it ends.

Another argument I hear a lot is that dealing with types imposes
too much burden on the programmer. I could sympathize with this sen-
timent after having to write a few declarations of iterators in C++ my-
self, except that there is a technology called type inference that lets the
compiler deduce most of the types from the context in which they are
used. In C++, you can now declare a variable auto and let the compiler
figure out its type.

In Haskell, except on rare occasions, type annotations are purely
optional. Programmers tend to use them anyway, because they can tell
alot about the semantics of code, and they make compilation errors eas-
ier to understand. It’s a common practice in Haskell to start a project by
designing the types. Later, type annotations drive the implementation

13

and become compiler-enforced comments.

Strong static typing is often used as an excuse for not testing the
code. You may sometimes hear Haskell programmers saying, “If it com-
piles, it must be correct” Of course, there is no guarantee that a type-
correct program is correct in the sense of producing the right output.
The result of this cavalier attitude is that in several studies Haskell
didn’t come as strongly ahead of the pack in code quality as one would
expect. It seems that, in the commercial setting, the pressure to fix bugs
is applied only up to a certain quality level, which has everything to
do with the economics of software development and the tolerance of
the end user, and very little to do with the programming language
or methodology. A better criterion would be to measure how many
projects fall behind schedule or are delivered with drastically reduced
functionality.

As for the argument that unit testing can replace strong typing,
consider the common refactoring practice in strongly typed languages:
changing the type of an argument of a particular function. In a strongly
typed language, it’s enough to modify the declaration of that function
and then fix all the build breaks. In a weakly typed language, the fact
that a function now expects different data cannot be propagated to call
sites. Unit testing may catch some of the mismatches, but testing is al-
most always a probabilistic rather than a deterministic process. Testing
is a poor substitute for proof.

What Are Types?

The simplest intuition for types is that they are sets of values. The type
Bool (remember, concrete types start with a capital letter in Haskell) is
a two-element set of True and False. Type Char is a set of all Unicode
characters like a or 3.

14

Sets can be finite or infinite. The type of String, which is a syn-
onym for a list of Char, is an example of an infinite set.
When we declare x to be an Integer:

X :: Integer

we are saying that it’s an element of the set of integers. Integer in
Haskell is an infinite set, and it can be used to do arbitrary precision
arithmetic. There is also a finite-set Int that corresponds to machine
type, just like the C++ int.

There are some subtleties that make this identification of types and
sets tricky. There are problems with polymorphic functions that involve
circular definitions, and with the fact that you can’t have a set of all sets;
but as I promised, I won’t be a stickler for math. The great thing is that
there is a category of sets, which is called Set, and we’ll just work with
it. In Set, objects are sets and morphisms (arrows) are functions.

Set is a very special category, because we can actually peek inside
its objects and get a lot of intuitions from doing that. For instance, we
know that an empty set has no elements. We know that there are spe-
cial one-element sets. We know that functions map elements of one set
to elements of another set. They can map two elements to one, but not
one element to two. We know that an identity function maps each ele-
ment of a set to itself, and so on. The plan is to gradually forget all this
information and instead express all those notions in purely categorical
terms, that is in terms of objects and arrows.

In the ideal world we would just say that Haskell types are sets and
Haskell functions are mathematical functions between sets. There is
just one little problem: A mathematical function does not execute any
code — it just knows the answer. A Haskell function has to calculate
the answer. It’s not a problem if the answer can be obtained in a finite

15

number of steps — however big that number might be. But there are
some calculations that involve recursion, and those might never termi-
nate. We can’t just ban non-terminating functions from Haskell because
distinguishing between terminating and non-terminating functions is
undecidable — the famous halting problem. That’s why computer scien-
tists came up with a brilliant idea, or a major hack, depending on your
point of view, to extend every type by one more special value called the
bottom and denoted by _|_, or Unicode L. This “value” corresponds to
a non-terminating computation. So a function declared as:

f :: Bool -> Bool

may return True, False, or _|_; the latter meaning that it would
never terminate.

Interestingly, once you accept the bottom as part of the type sys-
tem, it is convenient to treat every runtime error as a bottom, and even
allow functions to return the bottom explicitly. The latter is usually
done using the expression undefined, as in:

f :: Bool -> Bool
f x = undefined

This definition type checks because undefined evaluates to bottom,
which is a member of any type, including Bool. You can even write:

f :: Bool -> Bool
f = undefined

(without the x) because the bottom is also a member of the type
Bool->Bool.

16

Functions that may return bottom are called partial, as opposed to
total functions, which return valid results for every possible argument.

Because of the bottom, you’ll see the category of Haskell types and
functions referred to as Hask rather than Set. From the theoretical point
of view, this is the source of never-ending complications, so at this
point I will use my butcher’s knife and terminate this line of reasoning.
From the pragmatic point of view, it’s okay to ignore non-terminating
functions and bottoms, and treat Hask as bona fide Set.!

Why Do We Need a Mathematical Model?

As a programmer you are intimately familiar with the syntax and gram-
mar of your programming language. These aspects of the language are
usually described using formal notation at the very beginning of the
language spec. But the meaning, or semantics, of the language is much
harder to describe; it takes many more pages, is rarely formal enough,
and almost never complete. Hence the never ending discussions among
language lawyers, and a whole cottage industry of books dedicated to
the exegesis of the finer points of language standards.

There are formal tools for describing the semantics of a language
but, because of their complexity, they are mostly used with simplified
academic languages, not real-life programming behemoths. One such
tool called operational semantics describes the mechanics of program
execution. It defines a formalized idealized interpreter. The semantics of
industrial languages, such as C++, is usually described using informal
operational reasoning, often in terms of an “abstract machine”

INils Anders Danielsson, John Hughes, Patrik Jansson, Jeremy Gibbons, Fast and
Loose Reasoning is Morally Correct. This paper provides justification for ignoring bot-
toms in most contexts.

17

http://www.cs.ox.ac.uk/jeremy.gibbons/publications/fast+loose.pdf
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/fast+loose.pdf

The problem is that it’s very hard to prove things about programs
using operational semantics. To show a property of a program you es-
sentially have to “run it” through the idealized interpreter.

It doesn’t matter that programmers never perform formal proofs of
correctness. We always “think” that we write correct programs. Nobody
sits at the keyboard saying, “Oh, I'll just throw a few lines of code and
see what happens.” We think that the code we write will perform certain
actions that will produce desired results. We are usually quite surprised
when it doesn’t. That means we do reason about programs we write,
and we usually do it by running an interpreter in our heads. It’s just
really hard to keep track of all the variables. Computers are good at
running programs — humans are not! If we were, we wouldn’t need
computers.

But there is an alternative. It’s called denotational semantics and it’s
based on math. In denotational semantics every programing construct
is given its mathematical interpretation. With that, if you want to prove
a property of a program, you just prove a mathematical theorem. You
might think that theorem proving is hard, but the fact is that we hu-
mans have been building up mathematical methods for thousands of
years, so there is a wealth of accumulated knowledge to tap into. Also,
as compared to the kind of theorems that professional mathematicians
prove, the problems that we encounter in programming are usually
quite simple, if not trivial.

Consider the definition of a factorial function in Haskell, which is
a language quite amenable to denotational semantics:

fact n = product [1..n]

The expression [1..n] is a list of integers from 1 to n. The function
product multiplies all elements of a list. That’s just like a definition of

18

factorial taken from a math text. Compare this with C:

int fact(int n) {
int i;
int result = 1;
for (i = 2; i <= n; ++i)
result *= i;

return result;

Need I say more?

Okay, I'll be the first to admit that this was a cheap shot! A facto-
rial function has an obvious mathematical denotation. An astute reader
might ask: What’s the mathematical model for reading a character from
the keyboard or sending a packet across the network? For the longest
time that would have been an awkward question leading to a rather
convoluted explanation. It seemed like denotational semantics wasn’t
the best fit for a considerable number of important tasks that were
essential for writing useful programs, and which could be easily tack-
led by operational semantics. The breakthrough came from category
theory. Eugenio Moggi discovered that computational effect can be
mapped to monads. This turned out to be an important observation
that not only gave denotational semantics a new lease on life and made
pure functional programs more usable, but also shed new light on tra-
ditional programming. I'll talk about monads later, when we develop
more categorical tools.

One of the important advantages of having a mathematical model
for programming is that it’s possible to perform formal proofs of cor-
rectness of software. This might not seem so important when you’re
writing consumer software, but there are areas of programming where

19

the price of failure may be exorbitant, or where human life is at stake.
But even when writing web applications for the health system, you may
appreciate the thought that functions and algorithms from the Haskell
standard library come with proofs of correctness.

Pure and Dirty Functions

The things we call functions in C++ or any other imperative language,
are not the same things mathematicians call functions. A mathematical
function is just a mapping of values to values.

We can implement a mathematical function in a programming lan-
guage: Such a function, given an input value will calculate the output
value. A function to produce a square of a number will probably multi-
ply the input value by itself. It will do it every time it’s called, and it’s
guaranteed to produce the same output every time it’s called with the
same input. The square of a number doesn’t change with the phases of
the Moon.

Also, calculating the square of a number should not have a side
effect of dispensing a tasty treat for your dog. A “function” that does
that cannot be easily modelled as a mathematical function.

In programming languages, functions that always produce the same
result given the same input and have no side effects are called pure func-
tions. In a pure functional language like Haskell all functions are pure.
Because of that, it’s easier to give these languages denotational seman-
tics and model them using category theory. As for other languages, it’s
always possible to restrict yourself to a pure subset, or reason about side
effects separately. Later we’ll see how monads let us model all kinds of
effects using only pure functions. So we really don’t lose anything by
restricting ourselves to mathematical functions.

20

Examples of Types

Once you realize that types are sets, you can think of some rather exotic
types. For instance, what’s the type corresponding to an empty set? No,
it’s not C++ void, although this type is called Void in Haskell. It’s a type
that’s not inhabited by any values. You can define a function that takes
Void, but you can never call it. To call it, you would have to provide
a value of the type Void, and there just aren’t any. As for what this
function can return, there are no restrictions whatsoever. It can return
any type (although it never will, because it can’t be called). In other
words it’s a function that’s polymorphic in the return type. Haskellers
have a name for it:

absurd :: Void -> a

(Remember, a is a type variable that can stand for any type.) The
name is not coincidental. There is deeper interpretation of types and
functions in terms of logic called the Curry-Howard isomorphism. The
type Void represents falsity, and the type of the function absurd cor-
responds to the statement that from falsity follows anything, as in the
Latin adage “ex falso sequitur quodlibet.”

Next is the type that corresponds to a singleton set. It’s a type that
has only one possible value. This value just “is” You might not immedi-
ately recognise it as such, but that is the C++ void. Think of functions
from and to this type. A function from void can always be called. If
it’s a pure function, it will always return the same result. Here’s an
example of such a function:

int f44() { return 44; }

You might think of this function as taking “nothing”, but as we’ve
just seen, a function that takes “nothing” can never be called because

21

there is no value representing “nothing” So what does this function
take? Conceptually, it takes a dummy value of which there is only one
instance ever, so we don’t have to mention it explicitly. In Haskell,
however, there is a symbol for this value: an empty pair of parenthe-
ses, (). So, by a funny coincidence (or is it a coincidence?), the call to
a function of void looks the same in C++ and in Haskell. Also, because
of the Haskell’s love of terseness, the same symbol () is used for the
type, the constructor, and the only value corresponding to a singleton
set. So here’s this function in Haskell:

f44 .. () -> Integer
f44 () = 44

The first line declares that f44 takes the type (), pronounced “unit,”
into the type Integer. The second line defines 44 by pattern matching
the only constructor for unit, namely (), and producing the number 44.
You call this function by providing the unit value ():

f44 ()

Notice that every function of unit is equivalent to picking a single
element from the target type (here, picking the Integer 44). In fact you
could think of f44 as a different representation for the number 44. This
is an example of how we can replace explicit mention of elements of
a set by talking about functions (arrows) instead. Functions from unit
to any type A are in one-to-one correspondence with the elements of
that set A.

What about functions with the void return type, or, in Haskell, with
the unit return type? In C++ such functions are used for side effects, but
we know that these are not real functions in the mathematical sense of

22

the word. A pure function that returns unit does nothing: it discards its
argument.

Mathematically, a function from a set A to a singleton set maps
every element of A to the single element of that singleton set. For every
A there is exactly one such function. Here’s this function for Integer:

fInt :: Integer -> ()
fInt x = ()

You give it any integer, and it gives you back a unit. In the spirit
of terseness, Haskell lets you use the wildcard pattern, the underscore,
for an argument that is discarded. This way you don’t have to invent a
name for it. So the above can be rewritten as:

fInt :: Integer -> ()
fint _ = (O

Notice that the implementation of this function not only doesn’t
depend on the value passed to it, but it doesn’t even depend on the
type of the argument.

Functions that can be implemented with the same formula for any
type are called parametrically polymorphic. You can implement a whole
family of such functions with one equation using a type parameter in-
stead of a concrete type. What should we call a polymorphic function
from any type to unit type? Of course we’ll call it unit:

unit :: a => ()
unit _ = ()

In C++ you would write this function as:

23

template<class T>
void unit(T) {3}

Next in the typology of types is a two-element set. In C++ it’s called
bool and in Haskell, predictably, Bool. The difference is that in C++
bool is a built-in type, whereas in Haskell it can be defined as follows:

data Bool = True | False

(The way to read this definition is that Bool is either True or False.)
In principle, one should also be able to define a Boolean type in C++ as
an enumeration:

enum bool {
true,
false

}

but C++ enum is secretly an integer. The C++11 “enum class” could
have been used instead, but then you would have to qualify its values
with the class name, as in bool: : true and bool: : false, not to mention
having to include the appropriate header in every file that uses it.

Pure functions from Bool just pick two values from the target type,
one corresponding to True and another to False.

Functions to Bool are called predicates. For instance, the Haskell li-
brary Data.Char is full of predicates like isAlpha or isDigit. In C++
there is a similar library that defines, among others, isalphaand isdigit,
but these return an int rather than a Boolean. The actual predicates
are defined in std::ctype and have the form ctype::is(alpha, c),
ctype::is(digit, c), etc.

24

Challenges

1. Define a higher-order function (or a function object) memoize in
your favorite language. This function takes a pure function f as
an argument and returns a function that behaves almost exactly
like f, except that it only calls the original function once for every
argument, stores the result internally, and subsequently returns
this stored result every time it’s called with the same argument.
You can tell the memoized function from the original by watch-
ing its performance. For instance, try to memoize a function that
takes a long time to evaluate. You’ll have to wait for the result
the first time you call it, but on subsequent calls, with the same
argument, you should get the result immediately.

2. Try to memoize a function from your standard library that you
normally use to produce random numbers. Does it work?

3. Most random number generators can be initialized with a seed.
Implement a function that takes a seed, calls the random number
generator with that seed, and returns the result. Memoize that
function. Does it work?

4. Which of these C++ functions are pure? Try to memoize them
and observe what happens when you call them multiple times:
memoized and not.

(a) The factorial function from the example in the text.
(b) std::getchar()

(c) bool () {
std::cout << "Hello!" << std::endl;
return true;

}
(d) int f(int x)

25

static int y = 0;
y = X5
return y;

3

5. How many different functions are there from Bool to Bool? Can
you implement them all?

6. Draw a picture of a category whose only objects are the types
Void, () (unit), and Bool; with arrows corresponding to all pos-
sible functions between these types. Label the arrows with the
names of the functions.

26

Categories Great and Small

OU CAN GET REAL APPRECIATION for categories by studying a vari-
ety of examples. Categories come in all shapes and sizes and often
pop up in unexpected places. We’ll start with something really simple.

No Objects

The most trivial category is one with zero objects and, consequently,
zero morphisms. It’s a very sad category by itself, but it may be impor-
tant in the context of other categories, for instance, in the category of
all categories (yes, there is one). If you think that an empty set makes
sense, then why not an empty category?

Simple Graphs

You can build categories just by connecting objects with arrows. You
can imagine starting with any directed graph and making it into a cat-

27

egory by simply adding more arrows. First, add an identity arrow at
each node. Then, for any two arrows such that the end of one coincides
with the beginning of the other (in other words, any two composable
arrows), add a new arrow to serve as their composition. Every time you
add a new arrow, you have to also consider its composition with any
other arrow (except for the identity arrows) and itself. You usually end
up with infinitely many arrows, but that’s okay.

Another way of looking at this process is that you’re creating a
category, which has an object for every node in the graph, and all pos-
sible chains of composable graph edges as morphisms. (You may even
consider identity morphisms as special cases of chains of length zero.)

Such a category is called a free category generated by a given graph.
It’s an example of a free construction, a process of completing a given
structure by extending it with a minimum number of items to satisfy
its laws (here, the laws of a category). We’ll see more examples of it in
the future.

Orders

And now for something completely different! A category where a mor-
phism is a relation between objects: the relation of being less than or
equal. Let’s check if it indeed is a category. Do we have identity mor-
phisms? Every object is less than or equal to itself: check! Do we have
composition? If a <= bandb <= cthena <= c: check! Is composition
associative? Check! A set with a relation like this is called a preorder,
so a preorder is indeed a category.

You can also have a stronger relation, that satisfies an additional
condition that, if a <= b and b <= a then a must be the same as b.
That’s called a partial order.

Finally, you can impose the condition that any two objects are in

28

a relation with each other, one way or another; and that gives you a
linear order or total order.

Let’s characterize these ordered sets as categories. A preorder is a
category where there is at most one morphism going from any object a
to any object b. Another name for such a category is “thin” A preorder
is a thin category.

A set of morphisms from object a to object b in a category C is called
a hom-set and is written as C(a, b) (or, sometimes, Hom.(a, b)). So
every hom-set in a preorder is either empty or a singleton. That includes
the hom-set C(a, a), the set of morphisms from a to a, which must be
a singleton, containing only the identity, in any preorder. You may,
however, have cycles in a preorder. Cycles are forbidden in a partial
order.

It’s very important to be able to recognize preorders, partial or-
ders, and total orders because of sorting. Sorting algorithms, such as
quicksort, bubble sort, merge sort, etc., can only work correctly on to-
tal orders. Partial orders can be sorted using topological sort.

Monoid as Set

Monoid is an embarrassingly simple but amazingly powerful concept.
It’s the concept behind basic arithmetics: Both addition and multipli-
cation form a monoid. Monoids are ubiquitous in programming. They
show up as strings, lists, foldable data structures, futures in concurrent
programming, events in functional reactive programming, and so on.

Traditionally, a monoid is defined as a set with a binary operation.
All that’s required from this operation is that it’s associative, and that
there is one special element that behaves like a unit with respect to it.

For instance, natural numbers with zero form a monoid under ad-
dition. Associativity means that:

29

(a+b)y +tc=a+ (b+c)

(In other words, we can skip parentheses when adding numbers.)
The neutral element is zero, because:

0 +a=a
and
a+0=a

The second equation is redundant, because addition is commutative
(a + b = b + a), but commutativity is not part of the definition of a
monoid. For instance, string concatenation is not commutative and yet
it forms a monoid. The neutral element for string concatenation, by the
way, is an empty string, which can be attached to either side of a string
without changing it.

In Haskell we can define a type class for monoids — a type for which
there is a neutral element called mempty and a binary operation called
mappend:

class Monoid m where
mempty ::m
mappend :: m ->m ->m

The type signature for a two-argument function, m->m->m, might
look strange at first, but it will make perfect sense after we talk about
currying. You may interpret a signature with multiple arrows in two ba-
sic ways: as a function of multiple arguments, with the rightmost type
being the return type; or as a function of one argument (the leftmost

30

one), returning a function. The latter interpretation may be empha-
sized by adding parentheses (which are redundant, because the arrow
is right-associative), as in: m->(m->m). We’ll come back to this interpre-
tation in a moment.

Notice that, in Haskell, there is no way to express the monoidal
properties of mempty and mappend (i.e., the fact that mempty is neutral
and that mappend is associative). It’s the responsibility of the program-
mer to make sure they are satisfied.

Haskell classes are not as intrusive as C++ classes. When you’re
defining a new type, you don’t have to specify its class up front. You
are free to procrastinate and declare a given type to be an instance
of some class much later. As an example, let’s declare String to be a
monoid by providing the implementation of mempty and mappend (this
is, in fact, done for you in the standard Prelude):

instance Monoid String where

mempty =
mappend = (++)

Here, we have reused the list concatenation operator (++), because
a String is just a list of characters.

A word about Haskell syntax: Any infix operator can be turned into
a two-argument function by surrounding it with parentheses. Given
two strings, you can concatenate them by inserting ++ between them:

"Hello " ++ "world!"
or by passing them as two arguments to the parenthesized (++):

(++) "Hello " "world!"

31

Notice that arguments to a function are not separated by commas
or surrounded by parentheses. (This is probably the hardest thing to
get used to when learning Haskell.)

It’s worth emphasizing that Haskell lets you express equality of
functions, as in:

mappend = (++)

Conceptually, this is different than expressing the equality of values
produced by functions, as in:

mappend s1 s2 = (++) sl s2

The former translates into equality of morphisms in the category
Hask (or Set, if we ignore bottoms, which is the name for never-ending
calculations). Such equations are not only more succinct, but can of-
ten be generalized to other categories. The latter is called extensional
equality, and states the fact that for any two input strings, the out-
puts of mappend and (++) are the same. Since the values of arguments
are sometimes called points (as in: the value of f at point x), this is
called point-wise equality. Function equality without specifying the
arguments is described as point-free. (Incidentally, point-free equations
often involve composition of functions, which is symbolized by a point,
so this might be a little confusing to the beginner.)

The closest one can get to declaring a monoid in C++ would be to
use the (proposed) syntax for concepts.

template<class T>
T mempty = delete;

template<class T>

32

T mappend(T, T) = delete;

template<class M>
concept bool Monoid = requires (M m) {
{ mempty<M> } -> M;
{ mappend(m, m); } -> M;
h

The first definition uses a value template (also proposed). A poly-
morphic value is a family of values — a different value for every type.

The keyword delete means that there is no default value defined:
It will have to be specified on a case-by-case basis. Similarly, there is
no default for mappend.

The concept Monoid is a predicate (hence the bool type) that tests
whether there exist appropriate definitions of mempty and mappend for
a given type M.

An instantiation of the Monoid concept can be accomplished by
providing appropriate specializations and overloads:

template<>
std::string mempty<std::string> = {""};

std::string mappend(std::string s1, std::string s2) {

return s1 + s2;

Monoid as Category

That was the “familiar” definition of the monoid in terms of elements
of a set. But as you know, in category theory we try to get away from

33

sets and their elements, and instead talk about objects and morphisms.
So let’s change our perspective a bit and think of the application of the
binary operator as “moving” or “shifting” things around the set.

For instance, there is the operation of adding 5 to every natural
number. It maps 0 to 5, 1 to 6, 2 to 7, and so on. That’s a function
defined on the set of natural numbers. That’s good: we have a function
and a set. In general, for any number n there is a function of adding n
— the “adder” of n.

How do adders compose? The composition of the function that adds
5 with the function that adds 7 is a function that adds 12. So the compo-
sition of adders can be made equivalent to the rules of addition. That’s
good too: we can replace addition with function composition.

But wait, there’s more: There is also the adder for the neutral ele-
ment, zero. Adding zero doesn’t move things around, so it’s the identity
function in the set of natural numbers.

Instead of giving you the traditional rules of addition, I could as
well give you the rules of composing adders, without any loss of infor-
mation. Notice that the composition of adders is associative, because
the composition of functions is associative; and we have the zero adder
corresponding to the identity function.

An astute reader might have noticed that the mapping from inte-
gers to adders follows from the second interpretation of the type signa-
ture of mappend as m->(m->m). It tells us that mappend maps an element
of a monoid set to a function acting on that set.

Now I want you to forget that you are dealing with the set of natural
numbers and just think of it as a single object, a blob with a bunch
of morphisms — the adders. A monoid is a single object category. In
fact the name monoid comes from Greek mono, which means single.
Every monoid can be described as a single object category with a set

34

of morphisms that follow appropriate rules of composition.

String concatenation is an interesting case, because we have a choice
of defining right appenders and left appenders (or prependers, if you
will). The composition tables of the two models are a mirror reverse of
each other. You can easily convince yourself that appending “bar” after
“foo” corresponds to prepending “foo” after prepending “bar”.

You might ask the question whether every categorical monoid — a
one-object category — defines a unique set-with-binary-operator monoid.
It turns out that we can always extract a set from a single-object cat-
egory. This set is the set of morphisms — the adders in our example.
In other words, we have the hom-set M(m, m) of the single object m in
the category M. We can easily define a binary operator in this set: The

35

Monoid hom-set seen as morphisms and as points in a set.

monoidal product of two set-elements is the element corresponding to
the composition of the corresponding morphisms. If you give me two
elements of M(m, m) corresponding to f and g, their product will corre-
spond to the composition g f. The composition always exists, because
the source and the target for these morphisms are the same object. And
it’s associative by the rules of category. The identity morphism is the
neutral element of this product. So we can always recover a set monoid
from a category monoid. For all intents and purposes they are one and
the same.

There is just one little nit for mathematicians to pick: morphisms
don’t have to form a set. In the world of categories there are things
larger than sets. A category in which morphisms between any two ob-
jects form a set is called locally small. As promised, I will be mostly
ignoring such subtleties, but I thought I should mention them for the
record.

A lot of interesting phenomena in category theory have their root

36

in the fact that elements of a hom-set can be seen both as morphisms,
which follow the rules of composition, and as points in a set. Here,
composition of morphisms in M translates into monoidal product in
the set M(m, m).

Acknowledgments

I'd like to thank Andrew Sutton for rewriting my C++ monoid concept
code according to his and Bjarne Stroustrup’s latest proposal.

Challenges

1. Generate a free category from:

(a) A graph with one node and no edges

(b) A graph with one node and one (directed) edge (hint: this
edge can be composed with itself)

(c) A graph with two nodes and a single arrow between them

(d) A graph with a single node and 26 arrows marked with the
letters of the alphabet: a, b, c ... z.

2. What kind of order is this?

(a) A set of sets with the inclusion relation: A is included in B
if every element of A is also an element of B.

(b) C++ types with the following subtyping relation: T1 is a
subtype of T2 if a pointer to T1 can be passed to a function
that expects a pointer to T2 without triggering a compila-
tion error.

37

3. Considering that Bool is a set of two values True and False, show
that it forms two (set-theoretical) monoids with respect to, re-
spectively, operator && (AND) and | | (OR).

4. Represent the Bool monoid with the AND operator as a category:
List the morphisms and their rules of composition.

5. Represent addition modulo 3 as a monoid category.

38

Kleisli Categories

OU’'VE SEEN HOW TO MODEL types and pure functions as a cate-

gory. I also mentioned that there is a way to model side effects, or
non-pure functions, in category theory. Let’s have a look at one such
example: functions that log or trace their execution. Something that,
in an imperative language, would likely be implemented by mutating
some global state, as in:

string logger;
bool negate(bool b) {

logger += "Not so! ";
return !b;

You know that this is not a pure function, because its memoized
version would fail to produce a log. This function has side effects.

39

In modern programming, we try to stay away from global mutable
state as much as possible — if only because of the complications of
concurrency. And you would never put code like this in a library.

Fortunately for us, it’s possible to make this function pure. You just
have to pass the log explicitly, in and out. Let’s do that by adding a
string argument, and pairing regular output with a string that contains
the updated log:

pair<bool, string> negate(bool b, string logger) {
return make_pair(!b, logger + "Not so! ");

This function is pure, it has no side effects, it returns the same pair
every time it’s called with the same arguments, and it can be memoized
if necessary. However, considering the cumulative nature of the log,
you’d have to memoize all possible histories that can lead to a given
call. There would be a separate memo entry for:

negate(true, "It was the best of times. ");
and
negate(true, "It was the worst of times. ");

and so on.

It’s also not a very good interface for a library function. The callers
are free to ignore the string in the return type, so that’s not a huge
burden; but they are forced to pass a string as input, which might be
inconvenient.

Is there a way to do the same thing less intrusively? Is there a way
to separate concerns? In this simple example, the main purpose of the

40

function negate is to turn one Boolean into another. The logging is sec-
ondary. Granted, the message that is logged is specific to the function,
but the task of aggregating the messages into one continuous log is a
separate concern. We still want the function to produce a string, but
we’d like to unburden it from producing a log. So here’s the compro-
mise solution:

pair<bool, string> negate(bool b) {
return make_pair(!b, "Not so! ");

The idea is that the log will be aggregated between function calls.

To see how this can be done, let’s switch to a slightly more realistic
example. We have one function from string to string that turns lower
case characters to upper case:

string toUpper(string s) {
string result;
int (*toupperp)(int) = &toupper; // toupper is overloaded
transform(begin(s), end(s), back_inserter(result), toupperp);
return result;

and another that splits a string into a vector of strings, breaking it
on whitespace boundaries:
vector<string> toWords(string s) {
return words(s);
The actual work is done in the auxiliary function words:

41

vector<string> words(string s) {
vector<string> result{""};
for (auto i = begin(s); i != end(s); ++i)
{
if (isspace(*i))
result.push_back("");
else
result.back() += =*i;

3

return result;

We want to modify the functions
toUpper and toWords so that they
piggyback a message string on top of
their regular return values.

We will “embellish” the return
values of these functions. Let’s do it
in a generic way by defining a tem-
plate Writer that encapsulates a pair
whose first component is a value of
arbitrary type A and the second com-
ponent is a string;:

template<class A>
using Writer = pair<A, string>;

Here are the embellished func-
tions:

42

Writer<string> toUpper(string s) {
string result;
int (*toupperp)(int) = &toupper;
transform(begin(s), end(s), back_inserter(result), toupperp);
return make_pair(result, "toUpper ");

Writer<vector<string>> toWords(string s) {
return make_pair(words(s), "toWords ");

We want to compose these two functions into another embellished
function that uppercases a string and splits it into words, all the while
producing a log of those actions. Here’s how we may do it:

Writer<vector<string>> process(string s) {
auto p1 = toUpper(s);
auto p2 = toWords(pl.first);

return make_pair(p2.first, pl.second + p2.second);

We have accomplished our goal: The aggregation of the log is no
longer the concern of the individual functions. They produce their own
messages, which are then, externally, concatenated into a larger log.

Now imagine a whole program written in this style. It’s a nightmare
of repetitive, error-prone code. But we are programmers. We know how
to deal with repetitive code: we abstract it! This is, however, not your
run of the mill abstraction — we have to abstract function composition
itself. But composition is the essence of category theory, so before we
write more code, let’s analyze the problem from the categorical point
of view.

43

The Writer Category

The idea of embellishing the return types of a bunch of functions in
order to piggyback some additional functionality turns out to be very
fruitful. We’ll see many more examples of it. The starting point is our
regular category of types and functions. We’ll leave the types as objects,
but redefine our morphisms to be the embellished functions.

For instance, suppose that we want to embellish the function isEven
that goes from int to bool. We turn it into a morphism that is repre-
sented by an embellished function. The important point is that this mor-
phism is still considered an arrow between the objects int and bool,
even though the embellished function returns a pair:

pair<bool, string> isEven(int n) {
return make_pair(n % 2 == @, "isEven ");

By the laws of a category, we should be able to compose this mor-
phism with another morphism that goes from the object bool to what-
ever. In particular, we should be able to compose it with our earlier
negate:

pair<bool, string> negate(bool b) {
return make_pair(!b, "Not so! ");

Obviously, we cannot compose these two morphisms the same way
we compose regular functions, because of the input/output mismatch.
Their composition should look more like this:

pair<bool, string> isOdd(int n) {
pair<bool, string> p1 = isEven(n);

44

pair<bool, string> p2 = negate(pl.first);
return make_pair(p2.first, pl.second + p2.second);

So here’s the recipe for the composition of two morphisms in this
new category we are constructing:

1. Execute the embellished function corresponding to the first mor-
phism

2. Extract the first component of the result pair and pass it to the
embellished function corresponding to the second morphism

3. Concatenate the second component (the string) of of the first
result and the second component (the string) of the second result

4. Return a new pair combining the first component of the final
result with the concatenated string.

If we want to abstract this composition as a higher order function
in C++, we have to use a template parameterized by three types cor-
responding to three objects in our category. It should take two embel-
lished functions that are composable according to our rules, and return
a third embellished function:

template<class A, class B, class C>
function<Writer<C>(A)> compose(function<Writer(A)> ml,
function<Writer<C>(B)> m2)

return [m1, m2](A x) {
ml(x);
auto p2 = m2(pl.first);

auto p1

return make_pair(p2.first, pl.second + p2.second);

45

}

Now we can go back to our earlier example and implement the
composition of toUpper and toWords using this new template:

Writer<vector<string>> process(string s) {
return compose<string, string, vector<string>>(toUpper, toWords)(s

There is still a lot of noise with the passing of types to the compose
template. This can be avoided as long as you have a C++14-compliant
compiler that supports generalized lambda functions with return type
deduction (credit for this code goes to Eric Niebler):

auto const compose = [J(auto ml1, auto m2) {
return [m1, m2](auto x) {
auto p1 = m1(x);
auto p2 = m2(pl.first);
return make_pair(p2.first, pl.second + p2.second);
15
5

In this new definition, the implementation of process simplifies to:
Writer<vector<string>> process(string s) {

return compose(toUpper, toWords)(s);

But we are not finished yet. We have defined composition in our
new category, but what are the identity morphisms? These are not our

46

regular identity functions! They have to be morphisms from type A
back to type A, which means they are embellished functions of the
form:

Writer<A> identity(A);

They have to behave like units with respect to composition. If you
look at our definition of composition, you’ll see that an identity mor-
phism should pass its argument without change, and only contribute
an empty string to the log:

template<class A> Writer<A> identity(A x) {
return make_pair(x, "");

You can easily convince yourself that the category we have just de-
fined is indeed a legitimate category. In particular, our composition is
trivially associative. If you follow what’s happening with the first com-
ponent of each pair, it’s just a regular function composition, which is
associative. The second components are being concatenated, and con-
catenation is also associative.

An astute reader may notice that it would be easy to generalize this
construction to any monoid, not just the string monoid. We would use
mappend inside compose and mempty inside identity (in place of + and
). There really is no reason to limit ourselves to logging just strings.
A good library writer should be able to identify the bare minimum of

constraints that make the library work — here the logging library’s
only requirement is that the log have monoidal properties.

47

Writer in Haskell

The same thing in Haskell is a little more terse, and we also get a lot
more help from the compiler. Let’s start by defining the Writer type:

type Writer a = (a, String)

Here I'm just defining a type alias, an equivalent of a typedef (or
using) in C++. The type Writer is parameterized by a type variable
a and is equivalent to a pair of a and String. The syntax for pairs is
minimal: just two items in parentheses, separated by a comma.

Our morphisms are functions from an arbitrary type to some Writer

type:
a -> Writer b

We’ll declare the composition as a funny infix operator, sometimes
called the “fish™:

(>=>) :: (a => Writer b) -> (b -> Writer c) -> (a -> Writer c)

It’s a function of two arguments, each being a function on its own,
and returning a function. The first argument is of the type (a->Writer
b), the second is (b->Writer c), and the result is (a->Writer c).

Here’s the definition of this infix operator — the two arguments m1
and m2 appearing on either side of the fishy symbol:

ml >=>m2 = \x —->
let (y, s1) = ml x
(z, s2) =m2y
in (z, s1 ++ s2)

48

The result is a lambda function of one argument x. The lambda is
written as a backslash — think of it as the Greek letter A with an am-
putated leg.

The let expression lets you declare auxiliary variables. Here the
result of the call to m1 is pattern matched to a pair of variables (y,
s1); and the result of the call to m2, with the argument y from the first
pattern, is matched to (z, s2).

It is common in Haskell to pattern match pairs, rather than use
accessors, as we did in C++. Other than that there is a pretty straight-
forward correspondence between the two implementations.

The overall value of the let expression is specified in its in clause:
here it’s a pair whose first component is z and the second component
is the concatenation of two strings, s1++s2.

I will also define the identity morphism for our category, but for
reasons that will become clear much later, I will call it return.

return :: a -> Writer a

return x = (x, "")

For completeness, let’s have the Haskell versions of the embellished
functions upCase and toWords:

upCase :: String -> Writer String
upCase s = (map toUpper s, "upCase ")

toWords :: String -> Writer [String]
toWords s = (words s, "toWords ")

The function map corresponds to the C++ transform. It applies the
character function toUpper to the string s. The auxiliary function words
is defined in the standard Prelude library.

49

Finally, the composition of the two functions is accomplished with
the help of the fish operator:

process :: String -> Writer [String]
process = upCase >=> toWords

Kleisli Categories

You might have guessed that I haven’t invented this category on the
spot. It’s an example of the so called Kleisli category — a category based
on a monad. We are not ready to discuss monads yet, but I wanted to
give you a taste of what they can do. For our limited purposes, a Kleisli
category has, as objects, the types of the underlying programming lan-
guage. Morphisms from type A to type B are functions that go from
A to a type derived from B using the particular embellishment. Each
Kleisli category defines its own way of composing such morphisms, as
well as the identity morphisms with respect to that composition. (Later
we’ll see that the imprecise term “embellishment” corresponds to the
notion of an endofunctor in a category.)

The particular monad that I used as the basis of the category in this
post is called the writer monad and it’s used for logging or tracing the
execution of functions. It’s also an example of a more general mecha-
nism for embedding effects in pure computations. You've seen previ-
ously that we could model programming-language types and functions
in the category of sets (disregarding bottoms, as usual). Here we have
extended this model to a slightly different category, a category where
morphisms are represented by embellished functions, and their com-
position does more than just pass the output of one function to the
input of another. We have one more degree of freedom to play with:
the composition itself. It turns out that this is exactly the degree of free-

50

dom which makes it possible to give simple denotational semantics to
programs that in imperative languages are traditionally implemented
using side effects.

Challenge

A function that is not defined for all possible values of its argument is
called a partial function. It’s not really a function in the mathematical
sense, so it doesn’t fit the standard categorical mold. It can, however, be
represented by a function that returns an embellished type optional:

template<class A> class optional {
bool _isValid;
A _value;

public:
optional() . _isValid(false) {3}
optional(A v) : _isValid(true), _value(v) {3}
bool isValid() const { return _isValid; }
A value() const { return _value; }

3

As an example, here’s the implementation of the embellished func-
tion safe_root:

optional<double> safe_root(double x) {
if (x >= @) return optional<double>{sqrt(x)};
else return optional<double>{};

Here’s the challenge:

51

1. Construct the Kleisli category for partial functions (define com-
position and identity).

2. Implement the embellished function safe_reciprocal that re-
turns a valid reciprocal of its argument, if it’s different from zero.

3. Compose safe_root and safe_reciprocal to implement
safe_root_reciprocal that calculates sqrt(1/x) whenever pos-
sible.

Acknowledgments

I'm grateful to Eric Niebler for reading the draft and providing the
clever implementation of compose that uses advanced features of C++14
to drive type inference. I was able to cut the whole section of old fash-
ioned template magic that did the same thing using type traits. Good
riddance! I'm also grateful to Gershom Bazerman for useful comments
that helped me clarify some important points.

52

Products and Coproducts

The Ancient Greek playwright Euripides once said: “Every man is like
the company he is wont to keep.” We are defined by our relationships.
Nowhere is this more true than in category theory. If we want to single
out a particular object in a category, we can only do this by describing
its pattern of relationships with other objects (and itself). These rela-
tionships are defined by morphisms.

There is a common construction in category theory called the uni-
versal construction for defining objects in terms of their relationships.
One way of doing this is to pick a pattern, a particular shape con-
structed from objects and morphisms, and look for all its occurrences
in the category. If it’s a common enough pattern, and the category is
large, chances are you’ll have lots and lots of hits. The trick is to es-
tablish some kind of ranking among those hits, and pick what could be
considered the best fit.

This process is reminiscent of the way we do web searches. A query

53

is like a pattern. A very general query will give you large recall: lots of
hits. Some may be relevant, others not. To eliminate irrelevant hits, you
refine your query. That increases its precision. Finally, the search engine
will rank the hits and, hopefully, the one result that you’re interested
in will be at the top of the list.

Initial Object

The simplest shape is a single object. Obviously, there are as many in-
stances of this shape as there are objects in a given category. That’s
a lot to choose from. We need to establish some kind of ranking and
try to find the object that tops this hierarchy. The only means at our
disposal are morphisms. If you think of morphisms as arrows, then it’s
possible that there is an overall net flow of arrows from one end of the
category to another. This is true in ordered categories, for instance in
partial orders. We could generalize that notion of object precedence by
saying that object a is “more initial” than object b if there is an arrow
(a morphism) going from a to b. We would then define the initial object
as one that has arrows going to all other objects. Obviously there is no
guarantee that such an object exists, and that’s okay. A bigger problem
is that there may be too many such objects: The recall is good, but pre-
cision is lacking. The solution is to take a hint from ordered categories
— they allow at most one arrow between any two objects: there is only
one way of being less-than or equal-to another object. Which leads us
to this definition of the initial object:

The initial object is the object that has one and only one
morphism going to any object in the category.

However, even that doesn’t guarantee the uniqueness of the initial
object (if one exists). But it guarantees the next best thing: uniqueness

54

up to isomorphism. Isomorphisms are very important in category the-
ory, so I'll talk about them shortly. For now, let’s just agree that unique-
ness up to isomorphism justifies the use of “the” in the definition of the
initial object.

Here are some examples: The initial object in a partially ordered
set (often called a poset) is its least element. Some posets don’t have an
initial object — like the set of all integers, positive and negative, with
less-than-or-equal relation for morphisms.

In the category of sets and functions, the initial object is the empty
set. Remember, an empty set corresponds to the Haskell type Void
(there is no corresponding type in C++) and the unique polymorphic
function from Void to any other type is called absurd:

absurd :: Void -> a

It’s this family of morphisms that makes Void the initial object in

55

the category of types.

5.0.2 Terminal Object

Let’s continue with the single-object pattern, but let’s change the way
we rank the objects. We'll say that object a is “more terminal” than
object b if there is a morphism going from b to a (notice the reversal
of direction). We’ll be looking for an object that’s more terminal than
any other object in the category. Again, we will insist on uniqueness:

The terminal object is the object with one and only one mor-
phism coming to it from any object in the category.

And again, the terminal object is unique, up to isomorphism, which
I will show shortly. But first let’s look at some examples. In a poset,
the terminal object, if it exists, is the biggest object. In the category

56

of sets, the terminal object is a singleton. We’ve already talked about
singletons — they correspond to the void type in C++ and the unit type
() in Haskell. It’s a type that has only one value — implicit in C++ and
explicit in Haskell, denoted by (). We’ve also established that there is
one and only one pure function from any type to the unit type:

unit :: a -=> (O
unit = Q0

so all the conditions for the terminal object are satisfied.

Notice that in this example the uniqueness condition is crucial, be-
cause there are other sets (actually, all of them, except for the empty
set) that have incoming morphisms from every set. For instance, there
is a Boolean-valued function (a predicate) defined for every type:

yes :: a -> Bool
yes _ = True

But Bool is not a terminal object. There is at least one more Bool-
valued function from every type:

no :: a -> Bool
no _ = False

Insisting on uniqueness gives us just the right precision to narrow
down the definition of the terminal object to just one type.

Duality

You can’t help but to notice the symmetry between the way we defined
the initial object and the terminal object. The only difference between

57

the two was the direction of morphisms. It turns out that for any cate-
gory C we can define the opposite category C°P just by reversing all the
arrows. The opposite category automatically satisfies all the require-
ments of a category, as long as we simultaneously redefine composi-
tion. If original morphisms f::a->b and g: :b->c composed to h: :a->c
with h=gef, then the reversed morphisms f°°: :b->a and g°®: : c->b will
compose to h°": :c->a with h®®=f*.g°. And reversing the identity ar-
rows is a (pun alert!) no-op.

Duality is a very important property of categories because it dou-
bles the productivity of every mathematician working in category the-
ory. For every construction you come up with, there is its opposite; and
for every theorem you prove, you get one for free. The constructions in
the opposite category are often prefixed with “co”, so you have prod-
ucts and coproducts, monads and comonads, cones and cocones, limits
and colimits, and so on. There are no cocomonads though, because re-
versing the arrows twice gets us back to the original state.

It follows then that a terminal object is the initial object in the op-
posite category.

Isomorphisms

As programmers, we are well aware that defining equality is a non-
trivial task. What does it mean for two objects to be equal? Do they
have to occupy the same location in memory (pointer equality)? Or is
it enough that the values of all their components are equal? Are two
complex numbers equal if one is expressed as the real and imaginary
part, and the other as modulus and angle? You’d think that mathe-
maticians would have figured out the meaning of equality, but they
haven’t. They have the same problem of multiple competing defini-
tions for equality. There is the propositional equality, intensional equal-

58

ity, extensional equality, and equality as a path in homotopy type the-
ory. And then there are the weaker notions of isomorphism, and even
weaker of equivalence.

The intuition is that isomorphic objects look the same — they have
the same shape. It means that every part of one object corresponds to
some part of another object in a one-to-one mapping. As far as our
instruments can tell, the two objects are a perfect copy of each other.
Mathematically it means that there is a mapping from object a to object
b, and there is a mapping from object b back to object a, and they are
the inverse of each other. In category theory we replace mappings with
morphisms. An isomorphism is an invertible morphism; or a pair of
morphisms, one being the inverse of the other.

We understand the inverse in terms of composition and identity:
Morphism g is the inverse of morphism f if their composition is the
identity morphism. These are actually two equations because there are
two ways of composing two morphisms:

f . g=1id
g . f=1id

When I said that the initial (terminal) object was unique up to iso-
morphism, I meant that any two initial (terminal) objects are isomor-
phic. That’s actually easy to see. Let’s suppose that we have two initial
objects i; and i,. Since i, is initial, there is a unique morphism f from i,
to i,. By the same token, since i, is initial, there is a unique morphism
g from i, to i;. What’s the composition of these two morphisms?

The composition gof must be a morphism from i, to i,. But i, is
initial so there can only be one morphism going from i, to i,. Since we
are in a category, we know that there is an identity morphism from i, to
i;, and since there is room for only one, that must be it. Therefore g-f is

59

o 5o
(ot
;i v-.___,/fa
1 9 2,
All morphisms in this diagram are unique.

equal to identity. Similarly, f-g must be equal to identity, because there
can be only one morphism from i, back to i,. This proves that f and g
must be the inverse of each other. Therefore any two initial objects are
isomorphic.

Notice that in this proof we used the uniqueness of the morphism
from the initial object to itself. Without that we couldn’t prove the “up
to isomorphism” part. But why do we need the uniqueness of f and
g? Because not only is the initial object unique up to isomorphism, it
is unique up to unique isomorphism. In principle, there could be more
than one isomorphism between two objects, but that’s not the case
here. This “uniqueness up to unique isomorphism” is the important
property of all universal constructions.

Products

The next universal construction is that of a product. We know what a
cartesian product of two sets is: it’s a set of pairs. But what’s the pattern
that connects the product set with its constituent sets? If we can figure
that out, we’ll be able to generalize it to other categories.

All we can say is that there are two functions, the projections, from
the product to each of the constituents. In Haskell, these two functions
are called fst and snd and they pick, respectively, the first and the

60

second component of a pair:

fst :: (a, b) -> a
fst (x, y) = x

snd :: (a, b) -=> b
snd (x, y) =y

Here, the functions are defined by pattern matching their argu-
ments: the pattern that matches any pair is (x, y), and it extracts its
components into variables x and y.

These definitions can be simplified even further with the use of

wildcards:
fst (x, _) =
snd (_, ¥y) =y

In C++, we would use template functions, for instance:

template<class A, class B> A
fst(pair<A, B> const & p) {
return p.first;

Equipped with this seemingly very limited knowledge, let’s try to
define a pattern of objects and morphisms in the category of sets that
will lead us to the construction of a product of two sets, a and b. This
pattern consists of an object ¢ and two morphisms p and g connecting
it to a and b, respectively:

p::c—->a
g::c->b

61

All cs that fit this pattern will be considered candidates for the product.
There may be lots of them.

For instance, let’s pick, as our constituents, two Haskell types, Int and
Bool, and get a sampling of candidates for their product.

Here’s one: Int. Can Int be considered a candidate for the product
of Int and Bool? Yes, it can — and here are its projections:

p :: Int -> Int

g :: Int -> Bool
q _ = True

That’s pretty lame, but it matches the criteria.

Here’s another one: (Int, Int, Bool). It’s a tuple of three ele-
ments, or a triple. Here are two morphisms that make it a legitimate
candidate (we are using pattern matching on triples):

62

p :: (Int, Int, Bool) -> Int
p(x, ., J) =x

g :: (Int, Int, Bool) -> Bool
a(, -, b)=0b

You may have noticed that while our first candidate was too small — it
only covered the Int dimension of the product; the second was too big
— it spuriously duplicated the Int dimension.

But we haven’t explored yet the other part of the universal con-
struction: the ranking. We want to be able to compare two instances
of our pattern. We want to compare one candidate object c and its two
projections p and g with another candidate object ¢’ and its two pro-
jections p’and q’. We would like to say that c is “better” than ¢’ if there
is a morphism m from ¢’ to ¢ — but that’s too weak. We also want its
projections to be “better,” or “more universal,” than the projections of
¢’ What it means is that the projections p’ and ¢’ can be reconstructed
from p and q using m:

63

Another way of looking at these equation is that m factorizes p” and q’.
Just pretend that these equations are in natural numbers, and the dot
is multiplication: m is a common factor shared by p’ and ¢’

Just to build some intuitions, let me show you that the pair (Int,
Bool) with the two canonical projections, fst and snd is indeed better
than the two candidates I presented before.

Int

p/ " N

(In‘téﬁag[«)

4;” %‘g
lfﬁ' Bool

The mapping m for the first candidate is:

m :: Int -> (Int, Bool)
m x = (x, True)

Indeed, the two projections, p and g can be reconstructed as:

x
1

fst (m x)
snd (m x)

X

True

x
1]

The m for the second example is similarly uniquely determined:

m (x, _, b) = (x, b)

64

We were able to show that (Int, Bool) is better than either of the two
candidates. Let’s see why the opposite is not true. Could we find some
m' that would help us reconstruct fst and snd from p and g?

fst p.m'
qg.m'

snd

In our first example, q always returned True and we know that there
are pairs whose second component is False. We can’t reconstruct snd
from q.

The second example is different: we retain enough information after
running either p or g, but there is more than one way to factorize fst
and snd. Because both p and g ignore the second component of the
triple, our m’ can put anything in it. We can have:

m' (x, b) = (x, x, b)
or

m' (x, b) = (x, 42, b)
and so on.

Putting it all together, given any type c with two projections p and g,
there is a unique m from c to the cartesian product (a, b) that factorizes
them. In fact, it just combines p and q into a pair.

m:: c-> (a, b)
mx=(p X, qXx)

That makes the cartesian product (a, b) our best match, which
means that this universal construction works in the category of sets. It
picks the product of any two sets.

65

Now let’s forget about sets and define a product of two objects
in any category using the same universal construction. Such product
doesn’t always exist, but when it does, it is unique up to a unique iso-
morphism.

A product of two objects a and b is the object ¢ equipped
with two projections such that for any other object ¢’ equipped
with two projections there is a unique morphism m from

¢’ to c that factorizes those projections.

A (higher order) function that produces the factorizing function m
from two candidates is sometimes called the factorizer. In our case, it
would be the function:

factorizer :: (¢ -> a) -> (c -> b) -> (¢ -> (a, b))
factorizer p g = \x => (p x, g x)

Coproduct

Like every construction in category theory, the product has a dual,
which is called the coproduct. When we reverse the arrows in the prod-
uct pattern, we end up with an object ¢ equipped with two injections, i
and j: morphisms from a and b to c.

i::a->c
j i b->c

66

The ranking is also inverted: object ¢ is “better” than object ¢’ that is
equipped with the injections i’ and j’ if there is a morphism m from c
to ¢’ that factorizes the injections:

i'=m. 1

j'=m . j

The “best” such object, one with a unique morphism connecting it to
any other pattern, is called a coproduct and, if it exists, is unique up to
unique isomorphism.

A coproduct of two objects a and b is the object ¢ equipped
with two injections such that for any other object ¢’ equipped
with two injections there is a unique morphism m from c
to ¢’ that factorizes those injections.

67

In the category of sets, the coproduct is the disjoint union of two sets.
An element of the disjoint union of a and b is either an element of a or
an element of b. If the two sets overlap, the disjoint union contains two
copies of the common part. You can think of an element of a disjoint
union as being tagged with an identifier that specifies its origin.

For a programmer, it’s easier to understand a coproduct in terms
of types: it’s a tagged union of two types. C++ supports unions, but
they are not tagged. It means that in your program you have to some-
how keep track which member of the union is valid. To create a tagged
union, you have to define a tag — an enumeration — and combine it
with the union. For instance, a tagged union of an int and a
char const * could be implemented as:

struct Contact {
enum { isPhone, isEmail } tag;
union { int phoneNum; char const * emailAddr; };

};

The two injections can either be implemented as constructors or as
functions. For instance, here’s the first injection as a function PhoneNum:

Contact PhoneNum(int n) {
Contact c;
c.tag = isPhone;
c.phoneNum = n;
return c;

3

It injects an integer into Contact.
A tagged union is also called a variant, and there is a very general
implementation of a variant in the boost library, boost: :variant.

68

In Haskell, you can combine any data types into a tagged union by
separating data constructors with a vertical bar. The Contact example
translates into the declaration:

data Contact = PhoneNum Int | EmailAddr String

Here, PhoneNum and EmailAddr serve both as constructors (injections),
and as tags for pattern matching (more about this later). For instance,
this is how you would construct a contact using a phone number:

helpdesk :: Contact;
helpdesk = PhoneNum 2222222

Unlike the canonical implementation of the product that is built into
Haskell as the primitive pair, the canonical implementation of the co-
product is a data type called Either, which is defined in the standard
Prelude as:

Either a b = Left a | Right b

It is parameterized by two types, a and b and has two constructors:
Left that takes a value of type a, and Right that takes a value of type
b.

Just as we’ve defined the factorizer for a product, we can define one
for the coproduct. Given a candidate type c and two candidate injec-
tions i and j, the factorizer for Either produces the factoring function:

factorizer :: (a ->c¢) -> (b -=> ¢) -> Either a b -> ¢
factorizer i j (Left a) =1 a
j b

factorizer i j (Right b)

69

Asymmetry

We've seen two set of dual definitions: The definition of a terminal
object can be obtained from the definition of the initial object by re-
versing the direction of arrows; in a similar way, the definition of the
coproduct can be obtained from that of the product. Yet in the cate-
gory of sets the initial object is very different from the final object, and
coproduct is very different from product. We’ll see later that product
behaves like multiplication, with the terminal object playing the role
of one; whereas coproduct behaves more like the sum, with the initial
object playing the role of zero. In particular, for finite sets, the size of
the product is the product of the sizes of individual sets, and the size of
the coproduct is the sum of the sizes.

This shows that the category of sets is not symmetric with respect
to the inversion of arrows.

Notice that while the empty set has a unique morphism to any set
(the absurd function), it has no morphisms coming back. The singleton
set has a unique morphism coming to it from any set, but it also has
outgoing morphisms to every set (except for the empty one). As we’ve
seen before, these outgoing morphisms from the terminal object play
a very important role of picking elements of other sets (the empty set
has no elements, so there’s nothing to pick).

It’s the relationship of the singleton set to the product that sets it
apart from the coproduct. Consider using the singleton set, represented
by the unit type (), as yet another — vastly inferior — candidate for the
product pattern. Equip it with two projections p and g: functions from
the singleton to each of the constituent sets. Each selects a concrete
element from either set. Because the product is universal, there is also a
(unique) morphism m from our candidate, the singleton, to the product.
This morphism selects an element from the product set — it selects a

70

concrete pair. It also factorizes the two projections:

fst . m
snd . m

When acting on the singleton value (), the only element of the
singleton set, these two equations become:

p O =fst (m ()
qa O =snd (m)

Since m () is the element of the product picked by m, these equa-
tions tell use that the element picked by p from the first set, p (), is the
first component of the pair picked by m. Similarly, g () is equal to the
second component. This is in total agreement with our understanding
that elements of the product are pairs of elements from the constituent
sets.

There is no such simple interpretation of the coproduct. We could
try the singleton set as a candidate for a coproduct, in an attempt to
extract the elements from it, but there we would have two injections
going into it rather than two projections coming out of it. They’d tell
us nothing about their sources (in fact, we've seen that they ignore
the input parameter). Neither would the unique morphism from the
coproduct to our singleton. The category of sets just looks very different
when seen from the direction of the initial object than it does when seen
from the terminal end.

This is not an intrinsic property of sets, it’s a property of functions,
which we use as morphisms in Set. Functions are, in general, asymmet-
ric. Let me explain.

A function must be defined for every element of its domain set (in
programming, we call it a total function), but it doesn’t have to cover

71

the whole codomain. We’ve seen some extreme cases of it: functions
from a singleton set — functions that select just a single element in
the codomain. (Actually, functions from an empty set are the real ex-
tremes.) When the size of the domain is much smaller than the size of
the codomain, we often think of such functions as embedding the do-
main in the codomain. For instance, we can think of a function from
a singleton set as embedding its single element in the codomain. I call
them embedding functions, but mathematicians prefer to give a name
to the opposite: functions that tightly fill their codomains are called
surjective or onto.

The other source of asymmetry is that functions are allowed to map
many elements of the domain set into one element of the codomain.
They can collapse them. The extreme case are functions that map whole
sets into a singleton. You've seen the polymorphic unit function that
does just that. The collapsing can only be compounded by composi-
tion. A composition of two collapsing functions is even more collapsing
than the individual functions. Mathematicians have a name for non-
collapsing functions: they call them injective or one-to-one

Of course there are some functions that are neither embedding nor
collapsing. They are called bijections and they are truly symmetric, be-
cause they are invertible. In the category of sets, an isomorphism is the
same as a bijection.

Challenges

1. Show that the terminal object is unique up to unique isomor-
phism.

2. What is a product of two objects in a poset? Hint: Use the uni-
versal construction.

3. What is a coproduct of two objects in a poset?

72

. Implement the equivalent of Haskell Either as a generic type in
your favorite language (other than Haskell).

. Show that Either is a “better” coproduct than int equipped with
two injections:

int i(int n) { return n; }
int j(bool b) { return b? 0: 1; }

Hint: Define a function
int m(Either const & e);

that factorizes i and j.

. Continuing the previous problem: How would you argue that int
with the two injections i and j cannot be “better” than Either?
. Still continuing: What about these injections?

int i(int n) {

if (n < @) return n;
return n + 2;

int j(bool b) { return b? @: 1; }

. Come up with an inferior candidate for a coproduct of int and
bool that cannot be better than Either because it allows multiple
acceptable morphisms from it to Either.

Bibliography

. The Catsters, Products and Coproducts video.

73

https://www.youtube.com/watch?v=upCSDIO9pjc

Acknowledments

I'm grateful to Gershom Bazerman for reviewing this post before pub-
lication and for stimulating discussions.

74

	Preface
	I Part One
	Category: The Essence of Composition
	Arrows as Functions
	Properties of Composition
	Composition is the Essence of Programming
	Challenges

	Types and Functions
	Who Needs Types?
	Types Are About Composability
	What Are Types?
	Why Do We Need a Mathematical Model?
	Pure and Dirty Functions
	Examples of Types
	Challenges

	Categories Great and Small
	No Objects
	Simple Graphs
	Orders
	Monoid as Set
	Monoid as Category
	Acknowledgments
	Challenges

	Kleisli Categories
	The Writer Category
	Writer in Haskell
	Kleisli Categories
	Challenge
	Acknowledgments

	Products and Coproducts
	Initial Object
	Terminal Object
	Duality
	Isomorphisms
	Products
	Coproduct
	Asymmetry
	Challenges
	Bibliography
	Acknowledments

