Category Theory for Programmers

Bartosz Milewski

September 2017

@O0

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License
(cc BY-sA 4.0). Based on a work at https://bartoszmilewski.com.

PDF compiled by Igal Tabachnik,
based on the work at https://github.com/sarabander/sicp-pdf.


http://creativecommons.org/licenses/by-sa/4.0/
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/
https://github.com/hmemcpy/milewski-ctfp-pdf
https://github.com/sarabander/sicp-pdf

Preface

For some time now I've been floating the idea of writing
a book about category theory that would be targeted at
programmers. Mind you, not computer scientists but pro-
grammers — engineers rather than scientists. I know this
sounds crazy and I am properly scared. I can’t deny that
there is a huge gap between science and engineering be-
cause I have worked on both sides of the divide. But I've al-
ways felt a very strong compulsion to explain things. I have
tremendous admiration for Richard Feynman who was the
master of simple explanations. I know I'm no Feynman,
but I will try my best. 'm starting by publishing this pref-
ace — which is supposed to motivate the reader to learn
category theory — in hopes of starting a discussion and
soliciting feedback.

WILL ATTEMPT, in the space of a few paragraphs, to convince you
that this book is written for you, and whatever objections you might
have to learning one of the most abstract branches of mathematics in
your “copious spare time” are totally unfounded.
My optimism is based on several observations. First, category the-
ory is a treasure trove of extremely useful programming ideas. Haskell

ii



programmers have been tapping this resource for a long time, and the
ideas are slowly percolating into other languages, but this process is
too slow. We need to speed it up.

Second, there are many different kinds of math, and they appeal to
different audiences. You might be allergic to calculus or algebra, but it
doesn’t mean you won’t enjoy category theory. I would go as far as to
argue that category theory is the kind of math that is particularly well
suited for the minds of programmers. That’s because category theory
— rather than dealing with particulars — deals with structure. It deals
with the kind of structure that makes programs composable.

Composition is at the very root of category theory — it’s part of the
definition of the category itself. And I will argue strongly that com-
position is the essence of programming. We've been composing things
forever, long before some great engineer came up with the idea of a sub-
routine. Some time ago the principles of structural programming revo-
lutionized programming because they made blocks of code composable.
Then came object oriented programming, which is all about composing
objects. Functional programming is not only about composing func-
tions and algebraic data structures — it makes concurrency compos-
able - something that’s virtually impossible with other programming
paradigms.

Third, I have a secret weapon, a butcher’s knife, with which I will
butcher math to make it more palatable to programmers. When you’re
a professional mathematician, you have to be very careful to get all
your assumptions straight, qualify every statement properly, and con-
struct all your proofs rigorously. This makes mathematical papers and
books extremely hard to read for an outsider. 'm a physicist by train-
ing, and in physics we made amazing advances using informal reason-
ing. Mathematicians laughed at the Dirac delta function, which was

1ii



made up on the spot by the great physicist P. A. M. Dirac to solve some
differential equations. They stopped laughing when they discovered a
completely new branch of calculus called distribution theory that for-
malized Dirac’s insights.

Of course when using hand-waving arguments you run the risk of
saying something blatantly wrong, so I will try to make sure that there
is solid mathematical theory behind informal arguments in this book.
I do have a worn-out copy of Saunders Mac Lane’s Category Theory for
the Working Mathematician on my nightstand.

Since this is category theory for programmers, 1 will illustrate all
major concepts using computer code. You are probably aware that func-
tional languages are closer to math than the more popular imperative
languages. They also offer more abstracting power. So a natural temp-
tation would be to say: You must learn Haskell before the bounty of cat-
egory theory becomes available to you. But that would imply that cate-
gory theory has no application outside of functional programming and
that’s simply not true. So I will provide a lot of C++ examples. Granted,
you’ll have to overcome some ugly syntax, the patterns might not stand
out from the background of verbosity, and you might be forced to do
some copy and paste in lieu of higher abstraction, but that’s just the lot
of a C++ programmer.

But you’re not off the hook as far as Haskell is concerned. You don’t
have to become a Haskell programmer, but you need it as a language
for sketching and documenting ideas to be implemented in C++. That’s
exactly how I got started with Haskell. I found its terse syntax and pow-
erful type system a great help in understanding and implementing C++
templates, data structures, and algorithms. But since I can’t expect the
readers to already know Haskell, I will introduce it slowly and explain
everything as I go.

iv



If you're an experienced programmer, you might be asking your-
self: P've been coding for so long without worrying about category the-
ory or functional methods, so what’s changed? Surely you can’t help
but notice that there’s been a steady stream of new functional fea-
tures invading imperative languages. Even Java, the bastion of object-
oriented programming, let the lambdas in C++ has recently been evolv-
ing at a frantic pace — a new standard every few years — trying to
catch up with the changing world. All this activity is in preparation for
a disruptive change or, as we physicist call it, a phase transition. If you
keep heating water, it will eventually start boiling. We are now in the
position of a frog that must decide if it should continue swimming in
increasingly hot water, or start looking for some alternatives.

One of the forces that are driving the big change is the multicore
revolution. The prevailing programming paradigm, object oriented pro-
gramming, doesn’t buy you anything in the realm of concurrency and



parallelism, and instead encourages dangerous and buggy design. Data
hiding, the basic premise of object orientation, when combined with
sharing and mutation, becomes a recipe for data races. The idea of
combining a mutex with the data it protects is nice but, unfortunately,
locks don’t compose, and lock hiding makes deadlocks more likely and
harder to debug.

But even in the absence of concurrency, the growing complexity
of software systems is testing the limits of scalability of the impera-
tive paradigm. To put it simply, side effects are getting out of hand.
Granted, functions that have side effects are often convenient and easy
to write. Their effects can in principle be encoded in their names and
in the comments. A function called SetPassword or WriteFile is obvi-
ously mutating some state and generating side effects, and we are used
to dealing with that. It’s only when we start composing functions that
have side effects on top of other functions that have side effects, and
so on, that things start getting hairy. It’s not that side effects are in-
herently bad - it’s the fact that they are hidden from view that makes
them impossible to manage at larger scales. Side effects don’t scale, and
imperative programming is all about side effects.

Changes in hardware and the growing complexity of software are
forcing us to rethink the foundations of programming. Just like the
builders of Europe’s great gothic cathedrals we’ve been honing our
craft to the limits of material and structure. There is an unfinished
gothic cathedral in Beauvais, France, that stands witness to this deeply
human struggle with limitations. It was intended to beat all previous
records of height and lightness, but it suffered a series of collapses. Ad
hoc measures like iron rods and wooden supports keep it from disinte-
grating, but obviously a lot of things went wrong. From a modern per-
spective, it’s a miracle that so many gothic structures had been success-

vi


https://en.wikipedia.org/wiki/Beauvais_Cathedral

Ad hoc measures preventing the Beauvais cathedral from collapsing.

fully completed without the help of modern material science, computer
modelling, finite element analysis, and general math and physics. I hope
future generations will be as admiring of the programming skills we’ve
been displaying in building complex operating systems, web servers,
and the internet infrastructure. And, frankly, they should, because we’ve
done all this based on very flimsy theoretical foundations. We have to
fix those foundations if we want to move forward.

vii



Category: The Essence of Composition

CATEGORY is an embarrassingly simple concept. A category con-

sists of objects and arrows that go between them. That’s why cate-
gories are so easy to represent pictorially. An object can be drawn as
a circle or a point, and an arrow... is an arrow. (Just for variety, I will
occasionally draw objects as piggies and arrows as fireworks.) But the
essence of a category is composition. Or, if you prefer, the essence of
composition is a category. Arrows compose, so if you have an arrow
from object A to object B, and another arrow from object B to object
C, then there must be an arrow - their composition - that goes from A
to C.

Arrows as Functions

Is this already too much abstract nonsense? Do not despair. Let’s talk
concretes. Think of arrows, which are also called morphisms, as func-
tions. You have a function f that takes an argument of type A and
returns a B. You have another function g that takes a B and returns a



In a category, if there is an arrow going from A to B and an arrow going from B to C then there
must also be a direct arrow from A to C that is their composition. This diagram is not a full
category because it’s missing identity morphisms (see later).

C. You can compose them by passing the result of f to g. You have just
defined a new function that takes an A and returns a C.

In math, such composition is denoted by a small circle between
functions: g o f. Notice the right to left order of composition. For some
people this is confusing. You may be familiar with the pipe notation in
Unix, as in:

1sof | grep Chrome

Or the chevron >> in F#, which both go from left to right. But in math-
ematics and in Haskell functions compose right to left. It helps if you

read g o f as “g after {7



Let’s make this even more explicit by writing some C code. We have
one function f that takes an argument of type A and returns a value of

type B:

B f(A a);

and another:

C g(B b);

Their composition is:

C g_after_f(A a)

{
return g(f(a));

Here, again, you see right-to-left composition: g(f(a)); this time in C.

I wish I could tell you that there is a template in the C++ Standard Li-
brary that takes two functions and returns their composition, but there
isn’t one. So let’s try some Haskell for a change. Here’s the declaration
of a function from A to B:

f:: A->B
Similarly:
g::B->C

Their composition is:



g . f

Once you see how simple things are in Haskell, the inability to express
straightforward functional concepts in C++ is a little embarrassing. In
fact, Haskell will let you use Unicode characters so you can write com-
position as:

gof
You can even use Unicode double colons and arrows:
f A~ B

So here’s the first Haskell lesson: Double colon means “has the type
of...” A function type is created by inserting an arrow between two
types. You compose two functions by inserting a period between them
(or a Unicode circle).

Properties of Composition

There are two extremely important properties that the composition in
any category must satisfy.

1. Composition is associative. If you have three morphisms, f, g,
and h, that can be composed (that is, their objects match end-
to-end), you don’t need parentheses to compose them. In math
notation this is expressed as:

ho(gof) = (hog)of = hogof

In (pseudo) Haskell:



f:: A->B
g:: B->C
h :: C->D
h (g . f)=Cthh.g) . f=h.g. f

(I said "pseudo,” because equality is not defined for functions.)

Associativity is pretty obvious when dealing with functions, but
it may be not as obvious in other categories.

2. For every object A there is an arrow which is a unit of compo-
sition. This arrow loops from the object to itself. Being a unit of
composition means that, when composed with any arrow that ei-
ther starts at A or ends at A, respectively, it gives back the same
arrow. The unit arrow for object A is called id, (identity on A).
In math notation, if f goes from A to B then

foidy = f
and
idgof = f

When dealing with functions, the identity arrow is implemented as the
identity function that just returns back its argument. The implementa-
tion is the same for every type, which means this function is universally
polymorphic. In C++ we could define it as a template:

template<class T> T id(T x) { return x; }



Of course, in C++ nothing is that simple, because you have to take into
account not only what you’re passing but also how (that is, by value,
by reference, by const reference, by move, and so on).

In Haskell, the identity function is part of the standard library (called
Prelude). Here’s its declaration and definition:

id :: a -> a
id x = x

As you can see, polymorphic functions in Haskell are a piece of cake. In
the declaration, you just replace the type with a type variable. Here’s
the trick: names of concrete types always start with a capital letter,
names of type variables start with a lowercase letter. So here a stands
for all types.

Haskell function definitions consist of the name of the function fol-
lowed by formal parameters — here just one, x. The body of the function
follows the equal sign. This terseness is often shocking to newcomers
but you will quickly see that it makes perfect sense. Function definition
and function call are the bread and butter of functional programming
so their syntax is reduced to the bare minimum. Not only are there no
parentheses around the argument list but there are no commas between
arguments (you’ll see that later, when we define functions of multiple
arguments).

The body of a function is always an expression — there are no state-
ments in functions. The result of a function is this expression — here,
just x.

This concludes our second Haskell lesson.



The identity conditions can be written (again, in pseudo-Haskell) as:

f . id ==
id . f==f

You might be asking yourself the question: Why would anyone bother
with the identity function - a function that does nothing? Then again,
why do we bother with the number zero? Zero is a symbol for nothing.
Ancient Romans had a number system without a zero and they were
able to build excellent roads and aqueducts, some of which survive to
this day.

Neutral values like zero or id are extremely useful when working
with symbolic variables. That’s why Romans were not very good at al-
gebra, whereas the Arabs and the Persians, who were familiar with the
concept of zero, were. So the identity function becomes very handy as
an argument to, or a return from, a higher-order function. Higher order
functions are what make symbolic manipulation of functions possible.
They are the algebra of functions.

To summarize: A category consists of objects and arrows (mor-
phisms). Arrows can be composed, and the composition is associative.
Every object has an identity arrow that serves as a unit under compo-
sition.

Composition is the Essence of Programming

Functional programmers have a peculiar way of approaching problems.
They start by asking very Zen-like questions. For instance, when de-
signing an interactive program, they would ask: What is interaction?
When implementing Conway’s Game of Life, they would probably pon-
der about the meaning of life. In this spirit, 'm going to ask: What is



programming? At the most basic level, programming is about telling
the computer what to do. “Take the contents of memory address x and
add it to the contents of the register EAX” But even when we program
in assembly, the instructions we give the computer are an expression of
something more meaningful. We are solving a non-trivial problem (if
it were trivial, we wouldn’t need the help of the computer). And how
do we solve problems? We decompose bigger problems into smaller
problems. If the smaller problems are still too big, we decompose them
further, and so on. Finally, we write code that solves all the small prob-
lems. And then comes the essence of programming: we compose those
pieces of code to create solutions to larger problems. Decomposition
wouldn’t make sense if we weren’t able to put the pieces back together.

This process of hierarchical decomposition and recomposition is
not imposed on us by computers. It reflects the limitations of the human
mind. Our brains can only deal with a small number of concepts at a
time. One of the most cited papers in psychology, The Magical Number
Seven, Plus or Minus Two, postulated that we can only keep 7 + 2
“chunks” of information in our minds. The details of our understanding
of the human short-term memory might be changing, but we know for
sure that it’s limited. The bottom line is that we are unable to deal with
the soup of objects or the spaghetti of code. We need structure not
because well-structured programs are pleasant to look at, but because
otherwise our brains can’t process them efficiently. We often describe
some piece of code as elegant or beautiful, but what we really mean
is that it’s easy to process by our limited human minds. Elegant code
creates chunks that are just the right size and come in just the right
number for our mental digestive system to assimilate them.

So what are the right chunks for the composition of programs?
Their surface area has to increase slower than their volume. (I like this


http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

analogy because of the intuition that the surface area of a geometric
object grows with the square of its size — slower than the volume, which
grows with the cube of its size.) The surface area is the information
we need in order to compose chunks. The volume is the information
we need in order to implement them. The idea is that, once a chunk is
implemented, we can forget about the details of its implementation and
concentrate on how it interacts with other chunks. In object-oriented
programming, the surface is the class declaration of the object, or its
abstract interface. In functional programming, it’s the declaration of a
function. (I'm simplifying things a bit, but that’s the gist of it.)

Category theory is extreme in the sense that it actively discourages
us from looking inside the objects. An object in category theory is an
abstract nebulous entity. All you can ever know about it is how it re-
lates to other object — how it connects with them using arrows. This is
how internet search engines rank web sites by analyzing incoming and
outgoing links (except when they cheat). In object-oriented program-
ming, an idealized object is only visible through its abstract interface
(pure surface, no volume), with methods playing the role of arrows.
The moment you have to dig into the implementation of the object in
order to understand how to compose it with other objects, you’ve lost
the advantages of your programming paradigm.

Challenges

1. Implement, as best as you can, the identity function in your fa-
vorite language (or the second favorite, if your favorite language
happens to be Haskell).

2. Implement the composition function in your favorite language.
It takes two functions as arguments and returns a function that



is their composition.

. Write a program that tries to test that your composition function
respects identity.

. Is the world-wide web a category in any sense? Are links mor-
phisms?

. Is Facebook a category, with people as objects and friendships as
morphisms?

. When is a directed graph a category?

10



Types and Functions

HE CATEGORY OF TYPES AND FUNCTIONS plays an important role
in programming, so let’s talk about what types are and why we
need them.

Who Needs Types?

There seems to be some controversy about the advantages of static vs.
dynamic and strong vs. weak typing. Let me illustrate these choices
with a thought experiment. Imagine millions of monkeys at computer
keyboards happily hitting random keys, producing programs, compil-
ing, and running them.

11



With machine language, any combination of bytes produced by mon-
keys would be accepted and run. But with higher level languages, we do
appreciate the fact that a compiler is able to detect lexical and grammat-
ical errors. Lots of monkeys will go without bananas, but the remain-
ing programs will have a better chance of being useful. Type checking
provides yet another barrier against nonsensical programs. Moreover,
whereas in a dynamically typed language, type mismatches would be
discovered at runtime, in strongly typed statically checked languages
type mismatches are discovered at compile time, eliminating lots of in-
correct programs before they have a chance to run.

So the question is, do we want to make monkeys happy, or do we
want to produce correct programs?

The usual goal in the typing monkeys thought experiment is the
production of the complete works of Shakespeare. Having a spell checker

12



and a grammar checker in the loop would drastically increase the odds.
The analog of a type checker would go even further by making sure
that, once Romeo is declared a human being, he doesn’t sprout leaves
or trap photons in his powerful gravitational field.

Types Are About Composability

Category theory is about composing arrows. But not any two arrows
can be composed. The target object of one arrow must be the same
as the source source object of the next arrow. In programming we pass
the results on one function to another. The program will not work if the
target function is not able to correctly interpret the data produced by
the source function. The two ends must fit for the composition to work.
The stronger the type system of the language, the better this match can
be described and mechanically verified.

The only serious argument I hear against strong static type check-
ing is that it might eliminate some programs that are semantically cor-
rect. In practice, this happens extremely rarely and, in any case, every
language provides some kind of a backdoor to bypass the type sys-
tem when that’s really necessary. Even Haskell has unsafeCoerce. But
such devices should by used judiciously. Franz Kafka’s character, Gre-
gor Samsa, breaks the type system when he metamorphoses into a giant
bug, and we all know how it ends.

Another argument I hear a lot is that dealing with types imposes
too much burden on the programmer. I could sympathize with this sen-
timent after having to write a few declarations of iterators in C++ my-
self, except that there is a technology called type inference that lets the
compiler deduce most of the types from the context in which they are
used. In C++, you can now declare a variable auto and let the compiler
figure out its type.

13



In Haskell, except on rare occasions, type annotations are purely
optional. Programmers tend to use them anyway, because they can tell
alot about the semantics of code, and they make compilation errors eas-
ier to understand. It’s a common practice in Haskell to start a project by
designing the types. Later, type annotations drive the implementation
and become compiler-enforced comments.

Strong static typing is often used as an excuse for not testing the
code. You may sometimes hear Haskell programmers saying, “If it com-
piles, it must be correct” Of course, there is no guarantee that a type-
correct program is correct in the sense of producing the right ouput.
The result of this cavalier attitude is that in several studies Haskell
didn’t come as strongly ahead of the pack in code quality as one would
expect. It seems that, in the commercial setting, the pressure to fix bugs
is applied only up to a certain quality level, which has everything to
do with the economics of software development and the tolerance of
the end user, and very little to do with the programming language
or methodology. A better criterion would be to measure how many
projects fall behind schedule or are delivered with drastically reduced
functionality.

As for the argument that unit testing can replace strong typing,
consider the common refactoring practice in strongly typed languages:
changing the type of an argument of a particular function. In a strongly
typed language, it’s enough to modify the declaration of that function
and then fix all the build breaks. In a weakly typed language, the fact
that a function now expects different data cannot be propagated to call
sites. Unit testing may catch some of the mismatches, but testing is al-
most always a probabilistic rather than a deterministic process. Testing
is a poor substitute for proof.

14



What Are Types?

The simplest intuition for types is that they are sets of values. The type
Bool (remember, concrete types start with a capital letter in Haskell) is
a two-element set of True and False. Type Char is a set of all Unicode
characters like 'a' or '3".

Sets can be finite or infinite. The type of String, which is a syn-
onym for a list of Char, is an example of an infinite set.

When we declare x to be an Integer:

X :: Integer

we are saying that it’s an element of the set of integers. Integer in
Haskell is an infinite set, and it can be used to do arbitrary precision
arithmetic. There is also a finite-set Int that corresponds to machine
type, just like the C++ int.

There are some subtleties that make this identification of types and
sets tricky. There are problems with polymorphic functions that involve
circular definitions, and with the fact that you can’t have a set of all sets;
but as I promised, I won’t be a stickler for math. The great thing is that
there is a category of sets, which is called Set, and we’ll just work with
it. In Set, objects are sets and morphisms (arrows) are functions.

Set is a very special category, because we can actually peek inside
its objects and get a lot of intuitions from doing that. For instance, we
know that an empty set has no elements. We know that there are spe-
cial one-element sets. We know that functions map elements of one set
to elements of another set. They can map two elements to one, but not
one element to two. We know that an identity function maps each ele-
ment of a set to itself, and so on. The plan is to gradually forget all this
information and instead express all those notions in purely categorical
terms, that is in terms of objects and arrows.

15



In the ideal world we would just say that Haskell types are sets and
Haskell functions are mathematical functions between sets. There is
just one little problem: A mathematical function does not execute any
code — it just knows the answer. A Haskell function has to calculate
the answer. It’s not a problem if the answer can be obtained in a finite
number of steps — however big that number might be. But there are
some calculations that involve recursion, and those might never termi-
nate. We can’t just ban non-terminating functions from Haskell because
distinguishing between terminating and non-terminating functions is
undecidable — the famous halting problem. That’s why computer scien-
tists came up with a brilliant idea, or a major hack, depending on your
point of view, to extend every type by one more special value called the
bottom and denoted by _|_, or Unicode L. This “value” corresponds to
a non-terminating computation. So a function declared as:

f :: Bool -> Bool

may return True, False, or _|_; the latter meaning that it would never
terminate.

Interestingly, once you accept the bottom as part of the type sys-
tem, it is convenient to treat every runtime error as a bottom, and even
allow functions to return the bottom explicitly. The latter is usually
done using the expression undefined, as in:

f :: Bool -> Bool
f x = undefined

This definition type checks because undefined evaluates to bottom,
which is a member of any type, including Bool. You can even write:

f :: Bool -> Bool
f = undefined

16



(without the x) because the bottom is also a member of the type Bool-
>Bool.

Functions that may return bottom are called partial, as opposed to
total functions, which return valid results for every possible argument.

Because of the bottom, you’ll see the category of Haskell types and
functions referred to as Hask rather than Set. From the theoretical point
of view, this is the source of never-ending complications, so at this
point I will use my butcher’s knife and terminate this line of reasoning.
From the pragmatic point of view, it’s okay to ignore non-terminating
functions and bottoms, and treat Hask as bona fide Set'.

Why Do We Need a Mathematical Model?

As a programmer you are intimately familiar with the syntax and gram-
mar of your programming language. These aspects of the language are
usually described using formal notation at the very beginning of the
language spec. But the meaning, or semantics, of the language is much
harder to describe; it takes many more pages, is rarely formal enough,
and almost never complete. Hence the never ending discussions among
language lawyers, and a whole cottage industry of books dedicated to
the exegesis of the finer points of language standards.

There are formal tools for describing the semantics of a language
but, because of their complexity, they are mostly used with simplified
academic languages, not real-life programming behemoths. One such
tool called operational semantics describes the mechanics of program
execution. It defines a formalized idealized interpreter. The semantics of

INils Anders Danielsson, John Hughes, Patrik Jansson, Jeremy Gibbons, Fast and
Loose Reasoning is Morally Correct. This paper provides justification for ignoring bot-
toms in most contexts.

17


http://www.cs.ox.ac.uk/jeremy.gibbons/publications/fast+loose.pdf
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/fast+loose.pdf

industrial languages, such as C++, is usually described using informal
operational reasoning, often in terms of an “abstract machine”

The problem is that it’s very hard to prove things about programs
using operational semantics. To show a property of a program you es-
sentially have to “run it” through the idealized interpreter.

It doesn’t matter that programmers never perform formal proofs of
correctness. We always “think” that we write correct programs. Nobody
sits at the keyboard saying, “Oh, I'll just throw a few lines of code and
see what happens.” We think that the code we write will perform certain
actions that will produce desired results. We are usually quite surprised
when it doesn’t. That means we do reason about programs we write,
and we usually do it by running an interpreter in our heads. It’s just
really hard to keep track of all the variables. Computers are good at
running programs — humans are not! If we were, we wouldn’t need
computers.

But there is an alternative. It’s called denotational semantics and it’s
based on math. In denotational semantics every programing construct
is given its mathematical interpretation. With that, if you want to prove
a property of a program, you just prove a mathematical theorem. You
might think that theorem proving is hard, but the fact is that we hu-
mans have been building up mathematical methods for thousands of
years, so there is a wealth of accumulated knowledge to tap into. Also,
as compared to the kind of theorems that professional mathematicians
prove, the problems that we encounter in programming are usually
quite simple, if not trivial.

Consider the definition of a factorial function in Haskell, which is
a language quite amenable to denotational semantics:

fact n = product [1..n]

18



The expression [1..n] is a list of integers from 1 to n. The function
product multiplies all elements of a list. That’s just like a definition of
factorial taken from a math text. Compare this with C:

int fact(int n) {
int i;
int result = 1;
for (i = 2; i <= n; ++i)
result *= i;
return result;

Need I say more?

Okay, I'll be the first to admit that this was a cheap shot! A facto-
rial function has an obvious mathematical denotation. An astute reader
might ask: What’s the mathematical model for reading a character from
the keyboard or sending a packet across the network? For the longest
time that would have been an awkward question leading to a rather
convoluted explanation. It seemed like denotational semantics wasn’t
the best fit for a considerable number of important tasks that were
essential for writing useful programs, and which could be easily tack-
led by operational semantics. The breakthrough came from category
theory. Eugenio Moggi discovered that computational effect can be
mapped to monads. This turned out to be an important observation
that not only gave denotational semantics a new lease on life and made
pure functional programs more usable, but also shed new light on tra-
ditional programming. I'll talk about monads later, when we develop
more categorical tools.

One of the important advantages of having a mathematical model
for programming is that it’s possible to perform formal proofs of cor-

19



rectness of software. This might not seem so important when you’re
writing consumer software, but there are areas of programming where
the price of failure may be exorbitant, or where human life is at stake.
But even when writing web applications for the health system, you may
appreciate the thought that functions and algorithms from the Haskell
standard library come with proofs of correctness.

Pure and Dirty Functions

The things we call functions in C++ or any other imperative language,
are not the same things mathematicians call functions. A mathematical
function is just a mapping of values to values.

20



	Preface
	Category: The Essence of Composition
	Types and Functions

