2020-08-19 00:26:56 +03:00
|
|
|
||| Implementation of ordering relations for `Nat`ural numbers
|
|
|
|
module Data.Nat.Order
|
|
|
|
|
|
|
|
import Data.Nat
|
|
|
|
import Data.Fun
|
|
|
|
import Data.Rel
|
|
|
|
import Decidable.Decidable
|
|
|
|
import Decidable.Equality
|
|
|
|
import Decidable.Order
|
|
|
|
|
|
|
|
public export
|
|
|
|
total LTEIsTransitive : (m : Nat) -> (n : Nat) -> (o : Nat) ->
|
|
|
|
LTE m n -> LTE n o ->
|
|
|
|
LTE m o
|
|
|
|
LTEIsTransitive Z n o LTEZero nlteo = LTEZero
|
|
|
|
LTEIsTransitive (S m) (S n) (S o) (LTESucc mlten) (LTESucc nlteo) = LTESucc (LTEIsTransitive m n o mlten nlteo)
|
|
|
|
|
|
|
|
public export
|
|
|
|
total LTEIsReflexive : (n : Nat) -> LTE n n
|
|
|
|
LTEIsReflexive Z = LTEZero
|
|
|
|
LTEIsReflexive (S n) = LTESucc (LTEIsReflexive n)
|
|
|
|
|
|
|
|
public export
|
|
|
|
implementation Preorder Nat LTE where
|
|
|
|
transitive = LTEIsTransitive
|
|
|
|
reflexive = LTEIsReflexive
|
|
|
|
|
|
|
|
public export
|
|
|
|
total LTEIsAntisymmetric : (m : Nat) -> (n : Nat) ->
|
|
|
|
LTE m n -> LTE n m -> m = n
|
|
|
|
LTEIsAntisymmetric Z Z LTEZero LTEZero = Refl
|
|
|
|
LTEIsAntisymmetric (S n) (S m) (LTESucc mLTEn) (LTESucc nLTEm) with (LTEIsAntisymmetric n m mLTEn nLTEm)
|
|
|
|
LTEIsAntisymmetric (S n) (S n) (LTESucc mLTEn) (LTESucc nLTEm) | Refl = Refl
|
|
|
|
|
|
|
|
|
|
|
|
public export
|
|
|
|
implementation Poset Nat LTE where
|
|
|
|
antisymmetric = LTEIsAntisymmetric
|
|
|
|
|
|
|
|
public export
|
|
|
|
total zeroNeverGreater : {n : Nat} -> LTE (S n) Z -> Void
|
|
|
|
zeroNeverGreater {n} LTEZero impossible
|
|
|
|
zeroNeverGreater {n} (LTESucc _) impossible
|
|
|
|
|
|
|
|
public export
|
|
|
|
total zeroAlwaysSmaller : {n : Nat} -> LTE Z n
|
|
|
|
zeroAlwaysSmaller = LTEZero
|
|
|
|
|
|
|
|
public export
|
2020-09-05 22:48:42 +03:00
|
|
|
total ltesuccinjective : {0 n : Nat} -> {0 m : Nat} -> (LTE n m -> Void) -> LTE (S n) (S m) -> Void
|
2020-08-19 00:26:56 +03:00
|
|
|
ltesuccinjective {n} {m} disprf (LTESucc nLTEm) = void (disprf nLTEm)
|
|
|
|
ltesuccinjective {n} {m} disprf LTEZero impossible
|
|
|
|
|
|
|
|
public export
|
|
|
|
total decideLTE : (n : Nat) -> (m : Nat) -> Dec (LTE n m)
|
|
|
|
decideLTE Z y = Yes LTEZero
|
|
|
|
decideLTE (S x) Z = No zeroNeverGreater
|
|
|
|
decideLTE (S x) (S y) with (decEq (S x) (S y))
|
|
|
|
decideLTE (S x) (S y) | Yes eq = rewrite eq in Yes (reflexive (S y))
|
|
|
|
decideLTE (S x) (S y) | No _ with (decideLTE x y)
|
|
|
|
decideLTE (S x) (S y) | No _ | Yes nLTEm = Yes (LTESucc nLTEm)
|
|
|
|
decideLTE (S x) (S y) | No _ | No nGTm = No (ltesuccinjective nGTm)
|
|
|
|
|
|
|
|
public export
|
|
|
|
implementation Decidable [Nat,Nat] LTE where
|
|
|
|
decide = decideLTE
|
|
|
|
|
|
|
|
public export
|
|
|
|
total
|
|
|
|
lte : (m : Nat) -> (n : Nat) -> Dec (LTE m n)
|
|
|
|
lte m n = decide {ts = [Nat,Nat]} {p = LTE} m n
|
|
|
|
|
|
|
|
public export
|
|
|
|
total
|
|
|
|
shift : (m : Nat) -> (n : Nat) -> LTE m n -> LTE (S m) (S n)
|
|
|
|
shift m n mLTEn = LTESucc mLTEn
|
|
|
|
|
|
|
|
public export
|
|
|
|
implementation Ordered Nat LTE where
|
|
|
|
order Z n = Left LTEZero
|
|
|
|
order m Z = Right LTEZero
|
|
|
|
order (S k) (S j) with (order {to=LTE} k j)
|
|
|
|
order (S k) (S j) | Left prf = Left (shift k j prf)
|
|
|
|
order (S k) (S j) | Right prf = Right (shift j k prf)
|