Idris2/libs/papers/Language/IntrinsicTyping/ABT.idr

155 lines
5.1 KiB
Idris
Raw Normal View History

2022-11-04 17:00:49 +03:00
||| Abstract binding trees are a generic representation of terms over
||| a given signature
module Language.IntrinsicTyping.ABT
import Data.SnocList.Elem
%default total
------------------------------------------------------------------------
-- The Type
parameters {0 kind : Type}
||| A constructor's argument describes the kind of the variables that
||| will be bound in the subterm as well as the overall type of the
||| argument.
||| The argument `n` in `S n` is described by `MkArgument [] Nat`
||| The argument `b` in `\x. b` is described by `MkArgument [s] t`
public export
record Argument where
constructor MkArgument
binders : List kind
argType : kind
||| A signature is a relation describing constructors.
||| Each constructor has a list of arguments and a return type.
public export
0 Signature : Type
Signature = List Argument -> kind -> Type
||| Terms and Args are mutually defined.
||| A term is either a variable or a constructor fully applied to its arguments.
data Term : (sig : Signature) -> (ctx : SnocList kind) -> kind -> Type
||| Terms and Args are mutually defined.
||| Arguments are an Arguments-indexed list of subterms.
data Args : (sig : Signature) -> (ctx : SnocList kind) -> List Argument -> Type
public export
data Term : (sig : Signature) -> (ctx : SnocList kind) -> kind -> Type where
||| Variables are represented using typed De Bruijn indices.
Var : Elem s ctx -> Term sig ctx s
||| Constructors are provided by the signature
Con : sig args s -> Args sig ctx args -> Term sig ctx s
public export
data Args : (sig : Signature) -> (ctx : SnocList kind) -> List Argument -> Type where
||| Empty list
Nil : Args sig ctx []
||| An argument with binders `bds` and return type `s` is provided by a term
||| whose scope has been extended by `bds` and whose return type is `s`.
(::) : {bds : List kind} ->
Term sig (ctx <>< bds) s ->
Args sig ctx args ->
Args sig ctx (MkArgument bds s :: args)
------------------------------------------------------------------------
-- An example: STLC + Nat
namespace Example
||| The natural numbers & arrow types
data TY = NAT | ARR TY TY
||| A signature for STLC with natural numbers
data SIG : Signature {kind = TY} where
||| Zero takes no argument
||| and returns a NAT
Z : SIG [] NAT
||| Succ takes one argument (of type NAT, with no extra variable in scope),
||| and returns a NAT
S : SIG [MkArgument [] NAT] NAT
||| Lam takes one argument (of type t, with an extra variable of type s in scope),
||| and returns a function from s to t
LAM : SIG [MkArgument [s] t] (ARR s t)
||| App takes two arguments (of type (Arr s t) and s respectively,
||| with no extra variable in scope for either), and returns a t
APP : SIG [MkArgument [] (ARR s t), MkArgument [] s] t
||| Pattern synonym for Zero
Zero : Term SIG ctx NAT
Zero = Con Z []
||| Pattern synonym for Succ
Succ : Term SIG ctx NAT -> Term SIG ctx NAT
Succ n = Con S [n]
||| Pattern synonym for Lam
Lam : {s : TY} -> Term SIG (ctx :< s) t -> Term SIG ctx (ARR s t)
Lam b = Con LAM [b]
||| Pattern synonym for App
App : Term SIG ctx (ARR s t) -> Term SIG ctx s -> Term SIG ctx t
App f t = Con APP [f, t]
------------------------------------------------------------------------
-- Generic renaming
public export
lift : (forall s. Elem s ctx -> Elem s ctx') ->
(forall s. Elem s (ctx :< t) -> Elem s (ctx' :< t))
lift f Here = Here
lift f (There v) = There (f v)
public export
lifts : (bds : List kind) ->
(forall s. Elem s ctx -> Elem s ctx') ->
(forall s. Elem s (ctx <>< bds) -> Elem s (ctx' <>< bds))
lifts [] f = f
lifts (s :: ss) f = lifts ss (lift f)
public export
rename : (forall s. Elem s ctx -> Elem s ctx') ->
(forall s. Term sig ctx s -> Term sig ctx' s)
public export
renames : (forall s. Elem s ctx -> Elem s ctx') ->
(forall args. Args sig ctx args -> Args sig ctx' args)
rename f (Var v) = Var (f v)
rename f (Con c args) = Con c (renames f args)
renames f [] = []
renames f (arg :: args) = rename (lifts _ f) arg :: renames f args
------------------------------------------------------------------------
-- Generic substitution
public export
extend : (forall s. Elem s ctx -> Term sig ctx' s) ->
(forall s. Elem s (ctx :< t) -> Term sig (ctx' :< t) s)
extend f Here = Var Here
extend f (There v) = rename There (f v)
public export
extends : (bds : List kind) ->
(forall s. Elem s ctx -> Term sig ctx' s) ->
(forall s. Elem s (ctx <>< bds) -> Term sig (ctx' <>< bds) s)
extends [] f = f
extends (s :: ss) f = extends ss (extend f)
public export
substitute : (forall s. Elem s ctx -> Term sig ctx' s) ->
(forall s. Term sig ctx s -> Term sig ctx' s)
public export
substitutes : (forall s. Elem s ctx -> Term sig ctx' s) ->
(forall args. Args sig ctx args -> Args sig ctx' args)
substitute f (Var v) = f v
substitute f (Con c args) = Con c (substitutes f args)
substitutes f [] = []
substitutes f (arg :: args) = substitute (extends _ f) arg :: substitutes f args