mirror of
https://github.com/idris-lang/Idris2.git
synced 2025-01-04 14:18:26 +03:00
155 lines
5.1 KiB
Idris
155 lines
5.1 KiB
Idris
|
||| Abstract binding trees are a generic representation of terms over
|
||
|
||| a given signature
|
||
|
module Language.IntrinsicTyping.ABT
|
||
|
|
||
|
import Data.SnocList.Elem
|
||
|
|
||
|
%default total
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
-- The Type
|
||
|
|
||
|
parameters {0 kind : Type}
|
||
|
|
||
|
||| A constructor's argument describes the kind of the variables that
|
||
|
||| will be bound in the subterm as well as the overall type of the
|
||
|
||| argument.
|
||
|
||| The argument `n` in `S n` is described by `MkArgument [] Nat`
|
||
|
||| The argument `b` in `\x. b` is described by `MkArgument [s] t`
|
||
|
public export
|
||
|
record Argument where
|
||
|
constructor MkArgument
|
||
|
binders : List kind
|
||
|
argType : kind
|
||
|
|
||
|
||| A signature is a relation describing constructors.
|
||
|
||| Each constructor has a list of arguments and a return type.
|
||
|
public export
|
||
|
0 Signature : Type
|
||
|
Signature = List Argument -> kind -> Type
|
||
|
|
||
|
||| Terms and Args are mutually defined.
|
||
|
||| A term is either a variable or a constructor fully applied to its arguments.
|
||
|
data Term : (sig : Signature) -> (ctx : SnocList kind) -> kind -> Type
|
||
|
|
||
|
||| Terms and Args are mutually defined.
|
||
|
||| Arguments are an Arguments-indexed list of subterms.
|
||
|
data Args : (sig : Signature) -> (ctx : SnocList kind) -> List Argument -> Type
|
||
|
|
||
|
public export
|
||
|
data Term : (sig : Signature) -> (ctx : SnocList kind) -> kind -> Type where
|
||
|
||| Variables are represented using typed De Bruijn indices.
|
||
|
Var : Elem s ctx -> Term sig ctx s
|
||
|
||| Constructors are provided by the signature
|
||
|
Con : sig args s -> Args sig ctx args -> Term sig ctx s
|
||
|
|
||
|
public export
|
||
|
data Args : (sig : Signature) -> (ctx : SnocList kind) -> List Argument -> Type where
|
||
|
||| Empty list
|
||
|
Nil : Args sig ctx []
|
||
|
||| An argument with binders `bds` and return type `s` is provided by a term
|
||
|
||| whose scope has been extended by `bds` and whose return type is `s`.
|
||
|
(::) : {bds : List kind} ->
|
||
|
Term sig (ctx <>< bds) s ->
|
||
|
Args sig ctx args ->
|
||
|
Args sig ctx (MkArgument bds s :: args)
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
-- An example: STLC + Nat
|
||
|
|
||
|
namespace Example
|
||
|
|
||
|
||| The natural numbers & arrow types
|
||
|
data TY = NAT | ARR TY TY
|
||
|
|
||
|
||| A signature for STLC with natural numbers
|
||
|
data SIG : Signature {kind = TY} where
|
||
|
||| Zero takes no argument
|
||
|
||| and returns a NAT
|
||
|
Z : SIG [] NAT
|
||
|
||| Succ takes one argument (of type NAT, with no extra variable in scope),
|
||
|
||| and returns a NAT
|
||
|
S : SIG [MkArgument [] NAT] NAT
|
||
|
||| Lam takes one argument (of type t, with an extra variable of type s in scope),
|
||
|
||| and returns a function from s to t
|
||
|
LAM : SIG [MkArgument [s] t] (ARR s t)
|
||
|
||| App takes two arguments (of type (Arr s t) and s respectively,
|
||
|
||| with no extra variable in scope for either), and returns a t
|
||
|
APP : SIG [MkArgument [] (ARR s t), MkArgument [] s] t
|
||
|
|
||
|
||| Pattern synonym for Zero
|
||
|
Zero : Term SIG ctx NAT
|
||
|
Zero = Con Z []
|
||
|
|
||
|
||| Pattern synonym for Succ
|
||
|
Succ : Term SIG ctx NAT -> Term SIG ctx NAT
|
||
|
Succ n = Con S [n]
|
||
|
|
||
|
||| Pattern synonym for Lam
|
||
|
Lam : {s : TY} -> Term SIG (ctx :< s) t -> Term SIG ctx (ARR s t)
|
||
|
Lam b = Con LAM [b]
|
||
|
|
||
|
||| Pattern synonym for App
|
||
|
App : Term SIG ctx (ARR s t) -> Term SIG ctx s -> Term SIG ctx t
|
||
|
App f t = Con APP [f, t]
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
-- Generic renaming
|
||
|
|
||
|
public export
|
||
|
lift : (forall s. Elem s ctx -> Elem s ctx') ->
|
||
|
(forall s. Elem s (ctx :< t) -> Elem s (ctx' :< t))
|
||
|
lift f Here = Here
|
||
|
lift f (There v) = There (f v)
|
||
|
|
||
|
public export
|
||
|
lifts : (bds : List kind) ->
|
||
|
(forall s. Elem s ctx -> Elem s ctx') ->
|
||
|
(forall s. Elem s (ctx <>< bds) -> Elem s (ctx' <>< bds))
|
||
|
lifts [] f = f
|
||
|
lifts (s :: ss) f = lifts ss (lift f)
|
||
|
|
||
|
public export
|
||
|
rename : (forall s. Elem s ctx -> Elem s ctx') ->
|
||
|
(forall s. Term sig ctx s -> Term sig ctx' s)
|
||
|
|
||
|
public export
|
||
|
renames : (forall s. Elem s ctx -> Elem s ctx') ->
|
||
|
(forall args. Args sig ctx args -> Args sig ctx' args)
|
||
|
|
||
|
rename f (Var v) = Var (f v)
|
||
|
rename f (Con c args) = Con c (renames f args)
|
||
|
|
||
|
renames f [] = []
|
||
|
renames f (arg :: args) = rename (lifts _ f) arg :: renames f args
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
-- Generic substitution
|
||
|
|
||
|
public export
|
||
|
extend : (forall s. Elem s ctx -> Term sig ctx' s) ->
|
||
|
(forall s. Elem s (ctx :< t) -> Term sig (ctx' :< t) s)
|
||
|
extend f Here = Var Here
|
||
|
extend f (There v) = rename There (f v)
|
||
|
|
||
|
public export
|
||
|
extends : (bds : List kind) ->
|
||
|
(forall s. Elem s ctx -> Term sig ctx' s) ->
|
||
|
(forall s. Elem s (ctx <>< bds) -> Term sig (ctx' <>< bds) s)
|
||
|
extends [] f = f
|
||
|
extends (s :: ss) f = extends ss (extend f)
|
||
|
|
||
|
public export
|
||
|
substitute : (forall s. Elem s ctx -> Term sig ctx' s) ->
|
||
|
(forall s. Term sig ctx s -> Term sig ctx' s)
|
||
|
|
||
|
public export
|
||
|
substitutes : (forall s. Elem s ctx -> Term sig ctx' s) ->
|
||
|
(forall args. Args sig ctx args -> Args sig ctx' args)
|
||
|
|
||
|
substitute f (Var v) = f v
|
||
|
substitute f (Con c args) = Con c (substitutes f args)
|
||
|
|
||
|
substitutes f [] = []
|
||
|
substitutes f (arg :: args) = substitute (extends _ f) arg :: substitutes f args
|