mirror of
https://github.com/idris-lang/Idris2.git
synced 2025-01-04 14:18:26 +03:00
628 lines
21 KiB
Idris
628 lines
21 KiB
Idris
|
||| The content of this module is based on the paper
|
||
|
||| From Mathematics to Abstract Machine
|
||
|
||| A formal derivation of an executable Krivine machine
|
||
|
||| by Wouter Swierstra
|
||
|
|
||
|
module Language.IntrinsicTyping.Krivine
|
||
|
|
||
|
import Control.Function
|
||
|
import Data.DPair
|
||
|
import Data.List.Elem
|
||
|
|
||
|
%default total
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
-- Section 2: Types & Terms
|
||
|
|
||
|
public export
|
||
|
data Ty = Base | Arr Ty Ty
|
||
|
|
||
|
%name Ty a, b
|
||
|
|
||
|
public export
|
||
|
Context : Type
|
||
|
Context = List Ty
|
||
|
|
||
|
public export
|
||
|
data Term : Context -> Ty -> Type where
|
||
|
Lam : Term (a :: g) b -> Term g (Arr a b)
|
||
|
App : {a : Ty} -> Term g (Arr a b) -> Term g a -> Term g b
|
||
|
Var : Elem a g -> Term g a
|
||
|
|
||
|
data Closed : Ty -> Type
|
||
|
data Env : Context -> Type
|
||
|
|
||
|
public export
|
||
|
data Closed : Ty -> Type where
|
||
|
Closure : Term g a -> Env g -> Closed a
|
||
|
ClApp : {a : Ty} -> Closed (Arr a b) -> Closed a -> Closed b
|
||
|
|
||
|
public export
|
||
|
data Env : Context -> Type where
|
||
|
Nil : Env []
|
||
|
(::) : {a : Ty} -> Closed a -> Env g -> Env (a :: g)
|
||
|
|
||
|
namespace Value
|
||
|
|
||
|
public export
|
||
|
data IsValue : Closed g -> Type where
|
||
|
Lam : IsValue (Closure (Lam b) env)
|
||
|
|
||
|
public export
|
||
|
data Value : Ty -> Type where
|
||
|
Val : (c : Closed a) -> IsValue c -> Value a
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
-- Section 3: Reduction
|
||
|
|
||
|
public export
|
||
|
data Redex : Ty -> Type where
|
||
|
RVar : Elem a g -> Env g -> Redex a
|
||
|
RApp : {a : Ty} -> Term g (Arr a b) -> Term g a -> Env g -> Redex b
|
||
|
Beta : {a : Ty} -> Term (a :: g) b -> Env g -> Closed a -> Redex b
|
||
|
|
||
|
public export
|
||
|
redex : Redex a -> Closed a
|
||
|
redex (RVar v env) = Closure (Var v) env
|
||
|
redex (RApp f t env) = Closure (App f t) env
|
||
|
redex (Beta b env arg) = ClApp (Closure (Lam b) env) arg
|
||
|
|
||
|
public export
|
||
|
lookup : Env g -> Elem a g -> Closed a
|
||
|
lookup (v :: _) Here = v
|
||
|
lookup (_ :: vs) (There p) = lookup vs p
|
||
|
|
||
|
public export
|
||
|
contract : Redex a -> Closed a
|
||
|
contract (RVar v env) = lookup env v
|
||
|
contract (RApp f t env) = ClApp (Closure f env) (Closure t env)
|
||
|
contract (Beta b env arg) = Closure b (arg :: env)
|
||
|
|
||
|
namespace EvalContext
|
||
|
|
||
|
public export
|
||
|
data EvalContext : (inner, outer : Ty) -> Type where
|
||
|
Nil : EvalContext inner inner
|
||
|
(::) : Closed a -> EvalContext inner outer -> EvalContext (Arr a inner) outer
|
||
|
|
||
|
public export
|
||
|
snoc : EvalContext inner (Arr dom outer) -> Closed dom -> EvalContext inner outer
|
||
|
snoc [] t = [t]
|
||
|
snoc (hd :: ctx) t = hd :: snoc ctx t
|
||
|
|
||
|
public export
|
||
|
data SnocView : EvalContext inner outer -> Type where
|
||
|
Lin : SnocView []
|
||
|
(:<) : (ctx : EvalContext inner (Arr dom outer)) ->
|
||
|
(t : Closed dom) ->
|
||
|
SnocView (snoc ctx t)
|
||
|
|
||
|
public export
|
||
|
snocView : (ctx : EvalContext inner outer) -> SnocView ctx
|
||
|
snocView [] = [<]
|
||
|
snocView (hd :: ctx@_) with (snocView ctx)
|
||
|
_ | [<] = [] :< hd
|
||
|
_ | ctx' :< t = (hd :: ctx') :< t
|
||
|
|
||
|
public export
|
||
|
plug : {a : Ty} -> EvalContext a b -> Closed a -> Closed b
|
||
|
plug [] f = f
|
||
|
plug (t :: ts) f = plug ts (ClApp f t)
|
||
|
|
||
|
public export
|
||
|
0 plugSnoc : (ctx : EvalContext a (Arr dom b)) ->
|
||
|
(t : Closed dom) ->
|
||
|
(f : Closed a) ->
|
||
|
plug (snoc ctx t) f === ClApp (plug ctx f) t
|
||
|
plugSnoc [] _ _ = Refl
|
||
|
plugSnoc (t :: ctx) _ _ = plugSnoc ctx _ _
|
||
|
|
||
|
public export
|
||
|
data Decomposition : Closed a -> Type where
|
||
|
Val : (sc : Term (a :: g) b) -> (env : Env g) ->
|
||
|
Decomposition {a = Arr a b} (Closure (Lam sc) env)
|
||
|
Red : {s : Ty} -> (r : Redex s) -> (ctx : EvalContext s t) ->
|
||
|
Decomposition {a = t} (plug ctx (redex r))
|
||
|
|
||
|
public export
|
||
|
load : {a : Ty} -> (ctx : EvalContext a b) -> (c : Closed a) -> Decomposition (plug ctx c)
|
||
|
public export
|
||
|
unload : {a, b : Ty} -> (ctx : EvalContext (Arr a b) outer) ->
|
||
|
(sc : Term (a :: g) b) ->
|
||
|
(env : Env g) ->
|
||
|
Decomposition (plug ctx (Closure (Lam sc) env))
|
||
|
|
||
|
load ctx (ClApp f t) = load (t :: ctx) f
|
||
|
load ctx (Closure (Var v) env) = Red (RVar v env) ctx
|
||
|
load ctx (Closure (App f t) env) = Red (RApp f t env) ctx
|
||
|
load ctx (Closure (Lam sc) env) = unload ctx sc env
|
||
|
|
||
|
unload [] sc env = Val sc env
|
||
|
unload (arg :: ctx) sc env = Red (Beta sc env arg) ctx
|
||
|
|
||
|
public export
|
||
|
decompose : {a : Ty} -> (c : Closed a) -> Decomposition c
|
||
|
decompose = load []
|
||
|
|
||
|
public export
|
||
|
decomposePlug : {a : Ty} -> (ctx : EvalContext a b) -> (c : Closed a) ->
|
||
|
decompose (plug ctx c) === load ctx c
|
||
|
decomposePlug [] c = Refl
|
||
|
decomposePlug (t :: ctx) c = decomposePlug ctx (ClApp c t)
|
||
|
|
||
|
public export
|
||
|
recompose : Decomposition {a} c -> Closed a
|
||
|
recompose (Red r ctx) = plug ctx (contract r)
|
||
|
recompose (Val sc env) = Closure (Lam sc) env
|
||
|
|
||
|
public export
|
||
|
headReduce : {a : Ty} -> Closed a -> Closed a
|
||
|
headReduce c = recompose (decompose c)
|
||
|
|
||
|
public export
|
||
|
loadRedex :
|
||
|
(ctx : EvalContext a b) -> (r : Redex a) ->
|
||
|
load ctx (redex r) === Red r ctx
|
||
|
loadRedex ctx (RVar _ _) = Refl
|
||
|
loadRedex ctx (RApp _ _ _) = Refl
|
||
|
loadRedex ctx (Beta _ _ _) = Refl
|
||
|
|
||
|
|
||
|
public export
|
||
|
headReducePlug :
|
||
|
(ctx : EvalContext a b) -> (r : Redex a) ->
|
||
|
headReduce (plug ctx (redex r)) === plug ctx (contract r)
|
||
|
headReducePlug ctx r
|
||
|
= rewrite decomposePlug ctx (redex r) in
|
||
|
rewrite loadRedex ctx r in
|
||
|
Refl
|
||
|
|
||
|
headReduceNeutral :
|
||
|
(ctx : EvalContext s b) -> (r : Redex s) ->
|
||
|
(f : Closed (Arr a b)) -> Not (IsValue f) ->
|
||
|
ClApp f t === plug ctx (redex r) ->
|
||
|
plug ctx (contract r) === ClApp (headReduce f) t
|
||
|
headReduceNeutral ctx@_ r f nv with (snocView ctx)
|
||
|
headReduceNeutral ctx@_ (RVar _ _) f nv | [<] = \case Refl impossible
|
||
|
headReduceNeutral ctx@_ (RApp _ _ _) f nv | [<] = \case Refl impossible
|
||
|
headReduceNeutral ctx@_ (Beta _ _ _) f nv | [<] = \Refl => absurd (nv Lam)
|
||
|
_ | ctx' :< arg
|
||
|
= rewrite plugSnoc ctx' arg (contract r) in
|
||
|
rewrite plugSnoc ctx' arg (redex r) in
|
||
|
\Refl =>
|
||
|
rewrite headReducePlug ctx' r in
|
||
|
Refl
|
||
|
|
||
|
public export
|
||
|
headReduceClApp : {a, b : Ty} ->
|
||
|
(f : Closed (Arr a b)) -> Not (IsValue f) -> (t : Closed a) ->
|
||
|
headReduce (ClApp f t) === ClApp (headReduce f) t
|
||
|
headReduceClApp f nv t with (decompose (ClApp f t)) | (ClApp f t) proof eq
|
||
|
_ | Val sc env | .(Closure (Lam sc) env)
|
||
|
= case eq of { Refl impossible }
|
||
|
_ | Red r ctx | plug ctx (redex r)
|
||
|
= headReduceNeutral ctx r f nv eq
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
-- Section 4: Iterated head reduction
|
||
|
|
||
|
namespace Naïve
|
||
|
|
||
|
covering
|
||
|
evaluate : {a : Ty} -> Closed a -> Value a
|
||
|
evaluate c = iterate (decompose c) where
|
||
|
|
||
|
iterate : {a : Ty} -> {0 c : Closed a} -> Decomposition c -> Value a
|
||
|
iterate (Val b env)
|
||
|
-- there's a typo in the paper for this case
|
||
|
= Val (Closure (Lam b) env) Lam
|
||
|
iterate (Red r ctx) = iterate (decompose (plug ctx (contract r)))
|
||
|
|
||
|
-- Using the Bove-Capretta technique
|
||
|
|
||
|
public export
|
||
|
data Trace : Decomposition c -> Type where
|
||
|
Done : (sc, env : _) -> Trace (Val sc env)
|
||
|
Step : (ctx : EvalContext a b) -> (r : Redex a) ->
|
||
|
Trace (decompose (plug ctx (contract r))) -> Trace (Red r ctx)
|
||
|
|
||
|
public export
|
||
|
iterate : {a : Ty} -> {0 c : Closed a} -> {d : Decomposition {a} c} ->
|
||
|
(0 _ : Trace d) -> Value a
|
||
|
iterate (Done sc env) = Val (Closure (Lam sc) env) Lam
|
||
|
iterate (Step r ctx tr) = iterate tr
|
||
|
|
||
|
public export
|
||
|
Reducible : (a : Ty) -> Closed a -> Type
|
||
|
Reducible Base t = Trace (decompose t)
|
||
|
Reducible (Arr a b) t
|
||
|
= (Trace (decompose t)
|
||
|
, (x : Closed a) -> Reducible a x -> Reducible b (ClApp t x))
|
||
|
|
||
|
namespace ReducibleEnv
|
||
|
|
||
|
public export
|
||
|
data ReducibleEnv : Env g -> Type where
|
||
|
Nil : ReducibleEnv []
|
||
|
(::) : Reducible a t -> ReducibleEnv env -> ReducibleEnv (t :: env)
|
||
|
|
||
|
public export
|
||
|
lookup : ReducibleEnv env -> (v : Elem a g) -> Reducible a (lookup env v)
|
||
|
lookup (red :: _) Here = red
|
||
|
lookup (_ :: reds) (There v) = lookup reds v
|
||
|
|
||
|
public export
|
||
|
step : {a : Ty} -> {c : Closed a} -> Trace (decompose (headReduce c)) -> Trace (decompose c)
|
||
|
step {c = c@_} tr with (decompose c)
|
||
|
_ | Val sc env = tr
|
||
|
_ | Red r ctx = Step ctx r tr
|
||
|
|
||
|
public export
|
||
|
expand : {a : Ty} -> {c : Closed a} -> Reducible a (headReduce c) -> Reducible a c
|
||
|
expand {a = Base} tr = step tr
|
||
|
expand {a = Arr a b} {c = Closure (Lam x) env} (tr, hored) = (step tr, hored)
|
||
|
expand {a = Arr a b} {c = Closure (App x t) env} (tr, hored)
|
||
|
= (step tr, \ arg, red => expand (hored arg red))
|
||
|
expand {a = Arr a b} {c = Closure (Var x) env} (tr, hored)
|
||
|
= (step tr, \ arg, red => expand (hored arg red))
|
||
|
expand {a = Arr a b} {c = ClApp f t} (tr, hored)
|
||
|
= MkPair (step tr)
|
||
|
$ \ arg, red =>
|
||
|
let 0 eq = headReduceClApp (ClApp f t) (\case Lam impossible) arg in
|
||
|
let red = replace {p = Reducible b} (sym eq) (hored arg red) in
|
||
|
expand {c = ClApp (ClApp f t) arg} red
|
||
|
|
||
|
public export
|
||
|
closure : {a : Ty} -> (t : Term g a) -> {env : Env g} ->
|
||
|
ReducibleEnv env -> Reducible _ (Closure t env)
|
||
|
closure (Lam b) reds = (Done b _, \ arg, red => expand (closure b (red :: reds)))
|
||
|
closure (App f t) reds = expand (snd (closure f reds) (Closure t env) (closure t reds))
|
||
|
closure (Var v) reds = expand (lookup reds v)
|
||
|
|
||
|
public export
|
||
|
theorem : {a : Ty} -> (c : Closed a) -> Reducible a c
|
||
|
public export
|
||
|
theoremEnv : (env : Env g) -> ReducibleEnv env
|
||
|
|
||
|
theorem (Closure t env) = closure t (theoremEnv env)
|
||
|
theorem (ClApp f t) = snd (theorem f) t (theorem t)
|
||
|
|
||
|
theoremEnv [] = []
|
||
|
theoremEnv (t :: env) = theorem t :: theoremEnv env
|
||
|
|
||
|
public export
|
||
|
termination : {a : Ty} -> (c : Closed a) -> Trace (decompose c)
|
||
|
termination {a = Base} c = theorem c
|
||
|
termination {a = Arr a b} c = fst (theorem c)
|
||
|
|
||
|
public export
|
||
|
evaluate : {a : Ty} -> Closed a -> Value a
|
||
|
evaluate c = iterate (termination c)
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
-- Section 5: Refocusing
|
||
|
|
||
|
public export
|
||
|
refocus : {a : Ty} -> (ctx : EvalContext a b) -> (c : Closed a) -> Decomposition (plug ctx c)
|
||
|
refocus ctx (ClApp f t) = refocus (t :: ctx) f
|
||
|
refocus ctx (Closure (App f t) env) = Red (RApp f t env) ctx
|
||
|
refocus ctx (Closure (Var v) env) = Red (RVar v env) ctx
|
||
|
refocus [] (Closure (Lam b) env) = Val b env
|
||
|
refocus (t :: ctx) (Closure (Lam b) env) = Red (Beta b env t) ctx
|
||
|
|
||
|
public export
|
||
|
refocusCorrect : {a : Ty} -> (ctx : EvalContext a b) -> (c : Closed a) ->
|
||
|
refocus ctx c === decompose (plug ctx c)
|
||
|
refocusCorrect ctx (ClApp f t) = refocusCorrect (t :: ctx) f
|
||
|
refocusCorrect ctx (Closure (App f t) env) = sym $ decomposePlug ctx (Closure (App f t) env)
|
||
|
refocusCorrect ctx (Closure (Var v) env) = sym $ decomposePlug ctx (Closure (Var v) env)
|
||
|
refocusCorrect [] (Closure (Lam b) env) = Refl
|
||
|
refocusCorrect (t :: ctx) (Closure (Lam b) env) = sym $ decomposePlug (t :: ctx) (Closure (Lam b) env)
|
||
|
|
||
|
namespace Refocus
|
||
|
|
||
|
public export
|
||
|
data Trace : {c : Closed a} -> Decomposition c -> Type where
|
||
|
Done : (0 sc, env : _) -> Trace (Val sc env)
|
||
|
Step : (0 ctx : EvalContext a b) -> (0 r : Redex a) ->
|
||
|
Refocus.Trace (refocus ctx (contract r)) -> Trace (Red r ctx)
|
||
|
|
||
|
public export
|
||
|
trace : {0 c : Closed a} -> {0 d, e : Decomposition c} ->
|
||
|
Krivine.Trace d -> (0 _ : e === d) -> Refocus.Trace e
|
||
|
trace (Done sc env) Refl = Done sc env
|
||
|
trace (Step ctx r tr) Refl
|
||
|
= Step ctx r $ trace tr (refocusCorrect ctx (contract r))
|
||
|
|
||
|
public export
|
||
|
termination : {a : Ty} -> (c : Closed a) -> Refocus.Trace (decompose c)
|
||
|
termination c = trace (termination c) Refl
|
||
|
|
||
|
public export
|
||
|
iterate : {d : Decomposition {a} c} -> (0 _ : Refocus.Trace d) -> Value a
|
||
|
iterate (Done sc env) = Val (Closure (Lam sc) env) Lam
|
||
|
iterate (Step ctx r tr) = iterate tr
|
||
|
|
||
|
public export
|
||
|
evaluate : {a : Ty} -> Closed a -> Value a
|
||
|
evaluate c = iterate (Refocus.termination c)
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
-- Section 6: The Krivine machine
|
||
|
|
||
|
public export
|
||
|
IsValidEnv : Env g -> Type
|
||
|
|
||
|
public export
|
||
|
IsValidClosed : Closed a -> Type
|
||
|
|
||
|
IsValidClosed (Closure t env) = IsValidEnv env
|
||
|
IsValidClosed _ = Void
|
||
|
|
||
|
IsValidEnv [] = ()
|
||
|
IsValidEnv (t :: env) = (IsValidClosed t, IsValidEnv env)
|
||
|
|
||
|
public export
|
||
|
ValidEnv : Context -> Type
|
||
|
ValidEnv g = Subset (Env g) IsValidEnv
|
||
|
|
||
|
public export
|
||
|
ValidClosed : Ty -> Type
|
||
|
ValidClosed a = Subset (Closed a) IsValidClosed
|
||
|
|
||
|
namespace ValidClosed
|
||
|
|
||
|
public export
|
||
|
Closure : Term g a -> ValidEnv g -> ValidClosed a
|
||
|
Closure t (Element env pr) = Element (Closure t env) pr
|
||
|
|
||
|
public export
|
||
|
fstClosure : (t : Term g a) -> (env : ValidEnv g) ->
|
||
|
fst (Closure t env) === Closure t (fst env)
|
||
|
fstClosure t (Element env p) = Refl
|
||
|
|
||
|
public export
|
||
|
0 getContext : ValidClosed a -> Context
|
||
|
getContext (Element (Closure {g} t env) _) = g
|
||
|
|
||
|
public export
|
||
|
getEnv : (c : ValidClosed a) -> ValidEnv (getContext c)
|
||
|
getEnv (Element (Closure {g} _ env) pr) = Element env pr
|
||
|
|
||
|
public export
|
||
|
getTerm : (c : ValidClosed a) -> Term (getContext c) a
|
||
|
getTerm (Element (Closure t _) _) = t
|
||
|
|
||
|
public export
|
||
|
etaValidClosed : (c : ValidClosed a) -> c === Closure (getTerm c) (getEnv c)
|
||
|
etaValidClosed (Element (Closure t env) _) = Refl
|
||
|
|
||
|
namespace ValidEnv
|
||
|
|
||
|
public export
|
||
|
lookup : (env : ValidEnv g) -> Elem a g -> ValidClosed a
|
||
|
lookup (Element (t :: env) p) Here = Element t (fst p)
|
||
|
lookup (Element (t :: env) p) (There v) = lookup (Element env (snd p)) v
|
||
|
|
||
|
public export
|
||
|
fstLookup : (env : ValidEnv g) -> (v : Elem a g) ->
|
||
|
fst (lookup env v) === lookup (fst env) v
|
||
|
fstLookup (Element (t :: env) p) Here = Refl
|
||
|
fstLookup (Element (t :: env) p) (There v) = fstLookup (Element env (snd p)) v
|
||
|
|
||
|
public export
|
||
|
Nil : ValidEnv []
|
||
|
Nil = Element [] ()
|
||
|
|
||
|
public export
|
||
|
(::) : {a : Ty} -> ValidClosed a -> ValidEnv g -> ValidEnv (a :: g)
|
||
|
Element t p :: Element env q = Element (t :: env) (p, q)
|
||
|
|
||
|
public export
|
||
|
IsValidEvalContext : EvalContext a b -> Type
|
||
|
IsValidEvalContext [] = ()
|
||
|
IsValidEvalContext (t :: ctx) = (IsValidClosed t, IsValidEvalContext ctx)
|
||
|
|
||
|
public export
|
||
|
ValidEvalContext : (a, b : Ty) -> Type
|
||
|
ValidEvalContext a b = Subset (EvalContext a b) IsValidEvalContext
|
||
|
|
||
|
namespace ValidEvalContext
|
||
|
|
||
|
public export
|
||
|
Nil : ValidEvalContext a a
|
||
|
Nil = Element [] ()
|
||
|
|
||
|
public export
|
||
|
(::) : ValidClosed a -> ValidEvalContext b c -> ValidEvalContext (Arr a b) c
|
||
|
Element t p :: Element ctx q = Element (t :: ctx) (p, q)
|
||
|
|
||
|
public export
|
||
|
fstCons : (t : ValidClosed a) -> (ctx : ValidEvalContext b c) ->
|
||
|
fst (t :: ctx) === fst t :: fst ctx
|
||
|
fstCons (Element t p) (Element ctx q) = Refl
|
||
|
|
||
|
public export
|
||
|
[CONS] Biinjective ValidEvalContext.(::) where
|
||
|
biinjective
|
||
|
{x = Element t p} {y = Element t p}
|
||
|
{v = Element ts ps} {w = Element ts ps}
|
||
|
Refl = (Refl, Refl)
|
||
|
|
||
|
namespace ValidEvalContextView
|
||
|
|
||
|
public export
|
||
|
data View : ValidEvalContext a b -> Type where
|
||
|
Nil : View []
|
||
|
(::) : (t : ValidClosed a) -> (ctx : ValidEvalContext b c) ->
|
||
|
View (t :: ctx)
|
||
|
|
||
|
public export
|
||
|
irrelevantUnit : (t : ()) -> t === ()
|
||
|
irrelevantUnit () = Refl
|
||
|
|
||
|
public export
|
||
|
etaPair : (p : (a, b)) -> p === (fst p, snd p)
|
||
|
etaPair (x, y) = Refl
|
||
|
|
||
|
public export
|
||
|
view : (ctx : ValidEvalContext a b) -> View ctx
|
||
|
view (Element [] p) = rewrite irrelevantUnit p in []
|
||
|
view (Element (t :: ctx) p)
|
||
|
= rewrite etaPair p in
|
||
|
Element t (fst p) :: Element ctx (snd p)
|
||
|
|
||
|
namespace Machine
|
||
|
|
||
|
public export
|
||
|
data Trace : Term g a -> ValidEnv g -> ValidEvalContext a b -> Type where
|
||
|
|
||
|
Var : {env : ValidEnv g} -> {v : Elem a g} ->
|
||
|
Trace (getTerm (lookup env v)) (getEnv (lookup env v)) ctx ->
|
||
|
Trace (Var v) env ctx
|
||
|
|
||
|
App : {f : Term g (Arr a b)} -> {t : Term g a} ->
|
||
|
Trace f env (Closure t env :: ctx) ->
|
||
|
Trace (App f t) env ctx
|
||
|
|
||
|
Beta : {sc : Term (a :: g) b} ->
|
||
|
{arg : ValidClosed a} ->
|
||
|
{ctx : ValidEvalContext b c} ->
|
||
|
Trace sc (arg :: env) ctx ->
|
||
|
Trace (Lam sc) env (arg :: ctx)
|
||
|
|
||
|
Done : Trace (Lam sc) env []
|
||
|
|
||
|
data View : Trace t env ctx -> Type where
|
||
|
VVar : {0 env : ValidEnv g} -> {0 v : Elem a g} ->
|
||
|
(0 tr : Trace (getTerm (lookup env v)) (getEnv (lookup env v)) ctx) ->
|
||
|
View {t = Var v, env, ctx} (Var tr)
|
||
|
VApp : {0 f : Term g (Arr a b)} -> {0 t : Term g a} ->
|
||
|
{0 ctx : ValidEvalContext b c} ->
|
||
|
(0 tr : Trace f env (Closure t env :: ctx)) ->
|
||
|
View (App {f, t, env, ctx} tr)
|
||
|
VBeta : {0 sc : Term (a :: g) b} ->
|
||
|
{arg : ValidClosed a} ->
|
||
|
{ctx : ValidEvalContext b c} ->
|
||
|
(0 tr : Trace sc (arg :: env) ctx) ->
|
||
|
View (Beta {sc, arg, env, ctx} tr)
|
||
|
VDone : (sc : Term (a :: g) b) ->
|
||
|
View (Done {sc})
|
||
|
|
||
|
public export
|
||
|
vvar : (tr : Trace (Var v) env ctx) ->
|
||
|
(tr' : Trace ? ? ctx ** tr = Var tr')
|
||
|
vvar (Var tr) = (tr ** Refl)
|
||
|
|
||
|
public export
|
||
|
vapp : (tr : Trace (App f t) env ctx) ->
|
||
|
(tr' : Trace f env (Closure t env :: ctx) ** tr = App tr')
|
||
|
vapp (App tr) = (tr ** Refl)
|
||
|
|
||
|
public export
|
||
|
vlam0 : (eq : ctx = []) -> (tr : Trace (Lam sc) env ctx) -> tr ~=~ Machine.Done {sc, env}
|
||
|
vlam0 eq Done = Refl
|
||
|
|
||
|
public export
|
||
|
vlamS : {0 env : ValidEnv g} -> {0 arg : ValidClosed a} ->
|
||
|
{0 sc : Term (a :: g) b} -> {0 ctx' : ValidEvalContext b c} ->
|
||
|
(eq : ctx = ValidEvalContext.(::) arg ctx') ->
|
||
|
(tr : Trace (Lam sc) env ctx) ->
|
||
|
(tr' : Trace sc (arg :: env) ctx' ** tr ~=~ Machine.Beta {sc, arg, env} tr')
|
||
|
vlamS eq (Beta tr) with 0 (fst (biinjective @{CONS} eq))
|
||
|
_ | Refl with 0 (snd (biinjective @{CONS} eq))
|
||
|
_ | Refl = (tr ** Refl)
|
||
|
|
||
|
public export
|
||
|
view : (t : Term g a) -> (env : ValidEnv g) -> (ctx : ValidEvalContext a b) ->
|
||
|
(0 tr : Trace t env ctx) -> View tr
|
||
|
view (Var v) env ctx tr = rewrite snd (vvar tr) in VVar _
|
||
|
view (App f t) env ctx tr = rewrite snd (vapp tr) in VApp _
|
||
|
view (Lam sc) env ctx@_ tr with (view ctx)
|
||
|
_ | [] = rewrite vlam0 Refl tr in VDone sc
|
||
|
_ | (arg :: ctx') = rewrite snd (vlamS {env, arg, sc, ctx'} Refl tr) in VBeta _
|
||
|
|
||
|
public export
|
||
|
refocus : {a : Ty} ->
|
||
|
{t : Term g a} -> {env : ValidEnv g} ->
|
||
|
{ctx : ValidEvalContext a b} ->
|
||
|
(0 _ : Trace t env ctx) -> Value b
|
||
|
refocus tr@_ with (view _ _ _ tr)
|
||
|
_ | VVar tr' = refocus tr'
|
||
|
_ | VApp tr' = refocus tr'
|
||
|
_ | VBeta tr' = refocus tr'
|
||
|
_ | VDone sc = Val (Closure (Lam sc) (fst env)) Lam
|
||
|
|
||
|
-- This is way TOO nasty because we don't have eta for records :((
|
||
|
public export
|
||
|
correctness :
|
||
|
{a : Ty} ->
|
||
|
(ctx : ValidEvalContext a b) ->
|
||
|
(t : Term g a) ->
|
||
|
(env : ValidEnv g) ->
|
||
|
(trold : Refocus.Trace (refocus (fst ctx) (Closure t (fst env)))) ->
|
||
|
(trnew : Machine.Trace t env ctx) ->
|
||
|
refocus trnew === Refocus.iterate trold
|
||
|
correctness ctx (Var v) env (Step (fst ctx) (RVar v (fst env)) trold) (Var trnew)
|
||
|
with (lookup env v) proof eq
|
||
|
_ | Element (Closure t' env') penv'
|
||
|
= correctness ctx t' (Element env' penv')
|
||
|
(rewrite sym (cong fst eq) in rewrite fstLookup env v in trold)
|
||
|
trnew
|
||
|
correctness ctx (App f t) env (Step (fst ctx) (RApp f t (fst env)) trold) (App trnew)
|
||
|
= correctness (Closure t env :: ctx) f env
|
||
|
(rewrite fstCons (Closure t env) ctx in rewrite fstClosure t env in trold)
|
||
|
trnew
|
||
|
correctness .(Element arg parg :: Element ctx pctx) (Lam sc) (Element env penv)
|
||
|
(Step ctx (Beta sc env arg) trold)
|
||
|
(Beta {arg = Element arg parg, ctx = Element ctx pctx} trnew)
|
||
|
= correctness (Element ctx pctx) sc (Element arg parg :: Element env penv)
|
||
|
trold
|
||
|
trnew
|
||
|
correctness (Element [] _) (Lam sc) env (Done _ _) tr
|
||
|
-- DISGUSTING
|
||
|
= case tr of
|
||
|
Beta {arg = Element _ _, ctx = Element _ _} _ impossible
|
||
|
Done => Refl
|
||
|
|
||
|
-- Another disgusgint proof because of a mix of:
|
||
|
-- * lack of eta and the coverage
|
||
|
-- * invalid "Dot pattern not valid here (Not LHS)" on the LHS
|
||
|
-- * coverage checker being confused
|
||
|
public export
|
||
|
trace : {a : Ty} -> (ctx : ValidEvalContext a b) ->
|
||
|
(t : Term g a) -> (env : ValidEnv g) ->
|
||
|
Refocus.Trace (refocus (fst ctx) (Closure t (fst env))) ->
|
||
|
Trace t env ctx
|
||
|
trace ctx (Var v) env (Step (fst ctx) (RVar v (fst env)) tr)
|
||
|
with (fstLookup env v) | (lookup env v) proof eq
|
||
|
_ | lemma | Element (Closure t' env') p
|
||
|
with (lookup (fst env) v)
|
||
|
trace ctx (Var v) env (Step (fst ctx) (RVar v (fst env)) tr)
|
||
|
| Refl | Element (Closure t' env') penv' | .(Closure t' env')
|
||
|
= Var (rewrite eq in trace ctx t' (Element env' penv') tr)
|
||
|
trace (Element ctx pctx) (App f t) (Element env penv) (Step .(ctx) (RApp f t env) tr)
|
||
|
= App (trace (Closure t (Element env penv) :: Element ctx pctx) f (Element env penv) tr)
|
||
|
trace (Element (arg :: ctx) pctx) (Lam sc) (Element env penv) tr
|
||
|
= case tr of
|
||
|
Done _ _ impossible
|
||
|
(Step ctx (Beta sc env arg) tr) =>
|
||
|
rewrite etaPair pctx in
|
||
|
Beta {arg = Element arg (fst pctx), ctx = Element ctx (snd pctx)}
|
||
|
(trace (Element ctx (snd pctx)) sc (Element (arg :: env) (fst pctx, penv)) tr)
|
||
|
trace (Element [] pctx) (Lam sc) env tr
|
||
|
= case tr of
|
||
|
Beta {arg = Element _ _, ctx = Element _ _} _ impossible
|
||
|
Done sc .(fst env) => rewrite irrelevantUnit pctx in Done
|
||
|
|
||
|
public export
|
||
|
termination : {a : Ty} -> (t : Term [] a) -> Trace t [] []
|
||
|
termination t
|
||
|
= trace [] t []
|
||
|
$ rewrite refocusCorrect [] (Closure t []) in
|
||
|
Refocus.termination (Closure t [])
|
||
|
|
||
|
public export
|
||
|
evaluate : {a : Ty} -> Term [] a -> Value a
|
||
|
evaluate t = Machine.refocus (termination t)
|