Idris2/libs/papers/Language/IntrinsicTyping/Krivine.idr

628 lines
21 KiB
Idris
Raw Normal View History

2022-11-04 13:05:31 +03:00
||| The content of this module is based on the paper
||| From Mathematics to Abstract Machine
||| A formal derivation of an executable Krivine machine
||| by Wouter Swierstra
module Language.IntrinsicTyping.Krivine
import Control.Function
import Data.DPair
import Data.List.Elem
%default total
------------------------------------------------------------------------
-- Section 2: Types & Terms
public export
data Ty = Base | Arr Ty Ty
%name Ty a, b
public export
Context : Type
Context = List Ty
public export
data Term : Context -> Ty -> Type where
Lam : Term (a :: g) b -> Term g (Arr a b)
App : {a : Ty} -> Term g (Arr a b) -> Term g a -> Term g b
Var : Elem a g -> Term g a
data Closed : Ty -> Type
data Env : Context -> Type
public export
data Closed : Ty -> Type where
Closure : Term g a -> Env g -> Closed a
ClApp : {a : Ty} -> Closed (Arr a b) -> Closed a -> Closed b
public export
data Env : Context -> Type where
Nil : Env []
(::) : {a : Ty} -> Closed a -> Env g -> Env (a :: g)
namespace Value
public export
data IsValue : Closed g -> Type where
Lam : IsValue (Closure (Lam b) env)
public export
data Value : Ty -> Type where
Val : (c : Closed a) -> IsValue c -> Value a
------------------------------------------------------------------------
-- Section 3: Reduction
public export
data Redex : Ty -> Type where
RVar : Elem a g -> Env g -> Redex a
RApp : {a : Ty} -> Term g (Arr a b) -> Term g a -> Env g -> Redex b
Beta : {a : Ty} -> Term (a :: g) b -> Env g -> Closed a -> Redex b
public export
redex : Redex a -> Closed a
redex (RVar v env) = Closure (Var v) env
redex (RApp f t env) = Closure (App f t) env
redex (Beta b env arg) = ClApp (Closure (Lam b) env) arg
public export
lookup : Env g -> Elem a g -> Closed a
lookup (v :: _) Here = v
lookup (_ :: vs) (There p) = lookup vs p
public export
contract : Redex a -> Closed a
contract (RVar v env) = lookup env v
contract (RApp f t env) = ClApp (Closure f env) (Closure t env)
contract (Beta b env arg) = Closure b (arg :: env)
namespace EvalContext
public export
data EvalContext : (inner, outer : Ty) -> Type where
Nil : EvalContext inner inner
(::) : Closed a -> EvalContext inner outer -> EvalContext (Arr a inner) outer
public export
snoc : EvalContext inner (Arr dom outer) -> Closed dom -> EvalContext inner outer
snoc [] t = [t]
snoc (hd :: ctx) t = hd :: snoc ctx t
public export
data SnocView : EvalContext inner outer -> Type where
Lin : SnocView []
(:<) : (ctx : EvalContext inner (Arr dom outer)) ->
(t : Closed dom) ->
SnocView (snoc ctx t)
public export
snocView : (ctx : EvalContext inner outer) -> SnocView ctx
snocView [] = [<]
snocView (hd :: ctx@_) with (snocView ctx)
_ | [<] = [] :< hd
_ | ctx' :< t = (hd :: ctx') :< t
public export
plug : {a : Ty} -> EvalContext a b -> Closed a -> Closed b
plug [] f = f
plug (t :: ts) f = plug ts (ClApp f t)
public export
0 plugSnoc : (ctx : EvalContext a (Arr dom b)) ->
(t : Closed dom) ->
(f : Closed a) ->
plug (snoc ctx t) f === ClApp (plug ctx f) t
plugSnoc [] _ _ = Refl
plugSnoc (t :: ctx) _ _ = plugSnoc ctx _ _
public export
data Decomposition : Closed a -> Type where
Val : (sc : Term (a :: g) b) -> (env : Env g) ->
Decomposition {a = Arr a b} (Closure (Lam sc) env)
Red : {s : Ty} -> (r : Redex s) -> (ctx : EvalContext s t) ->
Decomposition {a = t} (plug ctx (redex r))
public export
load : {a : Ty} -> (ctx : EvalContext a b) -> (c : Closed a) -> Decomposition (plug ctx c)
public export
unload : {a, b : Ty} -> (ctx : EvalContext (Arr a b) outer) ->
(sc : Term (a :: g) b) ->
(env : Env g) ->
Decomposition (plug ctx (Closure (Lam sc) env))
load ctx (ClApp f t) = load (t :: ctx) f
load ctx (Closure (Var v) env) = Red (RVar v env) ctx
load ctx (Closure (App f t) env) = Red (RApp f t env) ctx
load ctx (Closure (Lam sc) env) = unload ctx sc env
unload [] sc env = Val sc env
unload (arg :: ctx) sc env = Red (Beta sc env arg) ctx
public export
decompose : {a : Ty} -> (c : Closed a) -> Decomposition c
decompose = load []
public export
decomposePlug : {a : Ty} -> (ctx : EvalContext a b) -> (c : Closed a) ->
decompose (plug ctx c) === load ctx c
decomposePlug [] c = Refl
decomposePlug (t :: ctx) c = decomposePlug ctx (ClApp c t)
public export
recompose : Decomposition {a} c -> Closed a
recompose (Red r ctx) = plug ctx (contract r)
recompose (Val sc env) = Closure (Lam sc) env
public export
headReduce : {a : Ty} -> Closed a -> Closed a
headReduce c = recompose (decompose c)
public export
loadRedex :
(ctx : EvalContext a b) -> (r : Redex a) ->
load ctx (redex r) === Red r ctx
loadRedex ctx (RVar _ _) = Refl
loadRedex ctx (RApp _ _ _) = Refl
loadRedex ctx (Beta _ _ _) = Refl
public export
headReducePlug :
(ctx : EvalContext a b) -> (r : Redex a) ->
headReduce (plug ctx (redex r)) === plug ctx (contract r)
headReducePlug ctx r
= rewrite decomposePlug ctx (redex r) in
rewrite loadRedex ctx r in
Refl
headReduceNeutral :
(ctx : EvalContext s b) -> (r : Redex s) ->
(f : Closed (Arr a b)) -> Not (IsValue f) ->
ClApp f t === plug ctx (redex r) ->
plug ctx (contract r) === ClApp (headReduce f) t
headReduceNeutral ctx@_ r f nv with (snocView ctx)
headReduceNeutral ctx@_ (RVar _ _) f nv | [<] = \case Refl impossible
headReduceNeutral ctx@_ (RApp _ _ _) f nv | [<] = \case Refl impossible
headReduceNeutral ctx@_ (Beta _ _ _) f nv | [<] = \Refl => absurd (nv Lam)
_ | ctx' :< arg
= rewrite plugSnoc ctx' arg (contract r) in
rewrite plugSnoc ctx' arg (redex r) in
\Refl =>
rewrite headReducePlug ctx' r in
Refl
public export
headReduceClApp : {a, b : Ty} ->
(f : Closed (Arr a b)) -> Not (IsValue f) -> (t : Closed a) ->
headReduce (ClApp f t) === ClApp (headReduce f) t
headReduceClApp f nv t with (decompose (ClApp f t)) | (ClApp f t) proof eq
_ | Val sc env | .(Closure (Lam sc) env)
= case eq of { Refl impossible }
_ | Red r ctx | plug ctx (redex r)
= headReduceNeutral ctx r f nv eq
------------------------------------------------------------------------
-- Section 4: Iterated head reduction
namespace Naïve
covering
evaluate : {a : Ty} -> Closed a -> Value a
evaluate c = iterate (decompose c) where
iterate : {a : Ty} -> {0 c : Closed a} -> Decomposition c -> Value a
iterate (Val b env)
-- there's a typo in the paper for this case
= Val (Closure (Lam b) env) Lam
iterate (Red r ctx) = iterate (decompose (plug ctx (contract r)))
-- Using the Bove-Capretta technique
public export
data Trace : Decomposition c -> Type where
Done : (sc, env : _) -> Trace (Val sc env)
Step : (ctx : EvalContext a b) -> (r : Redex a) ->
Trace (decompose (plug ctx (contract r))) -> Trace (Red r ctx)
public export
iterate : {a : Ty} -> {0 c : Closed a} -> {d : Decomposition {a} c} ->
(0 _ : Trace d) -> Value a
iterate (Done sc env) = Val (Closure (Lam sc) env) Lam
iterate (Step r ctx tr) = iterate tr
public export
Reducible : (a : Ty) -> Closed a -> Type
Reducible Base t = Trace (decompose t)
Reducible (Arr a b) t
= (Trace (decompose t)
, (x : Closed a) -> Reducible a x -> Reducible b (ClApp t x))
namespace ReducibleEnv
public export
data ReducibleEnv : Env g -> Type where
Nil : ReducibleEnv []
(::) : Reducible a t -> ReducibleEnv env -> ReducibleEnv (t :: env)
public export
lookup : ReducibleEnv env -> (v : Elem a g) -> Reducible a (lookup env v)
lookup (red :: _) Here = red
lookup (_ :: reds) (There v) = lookup reds v
public export
step : {a : Ty} -> {c : Closed a} -> Trace (decompose (headReduce c)) -> Trace (decompose c)
step {c = c@_} tr with (decompose c)
_ | Val sc env = tr
_ | Red r ctx = Step ctx r tr
public export
expand : {a : Ty} -> {c : Closed a} -> Reducible a (headReduce c) -> Reducible a c
expand {a = Base} tr = step tr
expand {a = Arr a b} {c = Closure (Lam x) env} (tr, hored) = (step tr, hored)
expand {a = Arr a b} {c = Closure (App x t) env} (tr, hored)
= (step tr, \ arg, red => expand (hored arg red))
expand {a = Arr a b} {c = Closure (Var x) env} (tr, hored)
= (step tr, \ arg, red => expand (hored arg red))
expand {a = Arr a b} {c = ClApp f t} (tr, hored)
= MkPair (step tr)
$ \ arg, red =>
let 0 eq = headReduceClApp (ClApp f t) (\case Lam impossible) arg in
let red = replace {p = Reducible b} (sym eq) (hored arg red) in
expand {c = ClApp (ClApp f t) arg} red
public export
closure : {a : Ty} -> (t : Term g a) -> {env : Env g} ->
ReducibleEnv env -> Reducible _ (Closure t env)
closure (Lam b) reds = (Done b _, \ arg, red => expand (closure b (red :: reds)))
closure (App f t) reds = expand (snd (closure f reds) (Closure t env) (closure t reds))
closure (Var v) reds = expand (lookup reds v)
public export
theorem : {a : Ty} -> (c : Closed a) -> Reducible a c
public export
theoremEnv : (env : Env g) -> ReducibleEnv env
theorem (Closure t env) = closure t (theoremEnv env)
theorem (ClApp f t) = snd (theorem f) t (theorem t)
theoremEnv [] = []
theoremEnv (t :: env) = theorem t :: theoremEnv env
public export
termination : {a : Ty} -> (c : Closed a) -> Trace (decompose c)
termination {a = Base} c = theorem c
termination {a = Arr a b} c = fst (theorem c)
public export
evaluate : {a : Ty} -> Closed a -> Value a
evaluate c = iterate (termination c)
------------------------------------------------------------------------
-- Section 5: Refocusing
public export
refocus : {a : Ty} -> (ctx : EvalContext a b) -> (c : Closed a) -> Decomposition (plug ctx c)
refocus ctx (ClApp f t) = refocus (t :: ctx) f
refocus ctx (Closure (App f t) env) = Red (RApp f t env) ctx
refocus ctx (Closure (Var v) env) = Red (RVar v env) ctx
refocus [] (Closure (Lam b) env) = Val b env
refocus (t :: ctx) (Closure (Lam b) env) = Red (Beta b env t) ctx
public export
refocusCorrect : {a : Ty} -> (ctx : EvalContext a b) -> (c : Closed a) ->
refocus ctx c === decompose (plug ctx c)
refocusCorrect ctx (ClApp f t) = refocusCorrect (t :: ctx) f
refocusCorrect ctx (Closure (App f t) env) = sym $ decomposePlug ctx (Closure (App f t) env)
refocusCorrect ctx (Closure (Var v) env) = sym $ decomposePlug ctx (Closure (Var v) env)
refocusCorrect [] (Closure (Lam b) env) = Refl
refocusCorrect (t :: ctx) (Closure (Lam b) env) = sym $ decomposePlug (t :: ctx) (Closure (Lam b) env)
namespace Refocus
public export
data Trace : {c : Closed a} -> Decomposition c -> Type where
Done : (0 sc, env : _) -> Trace (Val sc env)
Step : (0 ctx : EvalContext a b) -> (0 r : Redex a) ->
Refocus.Trace (refocus ctx (contract r)) -> Trace (Red r ctx)
public export
trace : {0 c : Closed a} -> {0 d, e : Decomposition c} ->
Krivine.Trace d -> (0 _ : e === d) -> Refocus.Trace e
trace (Done sc env) Refl = Done sc env
trace (Step ctx r tr) Refl
= Step ctx r $ trace tr (refocusCorrect ctx (contract r))
public export
termination : {a : Ty} -> (c : Closed a) -> Refocus.Trace (decompose c)
termination c = trace (termination c) Refl
public export
iterate : {d : Decomposition {a} c} -> (0 _ : Refocus.Trace d) -> Value a
iterate (Done sc env) = Val (Closure (Lam sc) env) Lam
iterate (Step ctx r tr) = iterate tr
public export
evaluate : {a : Ty} -> Closed a -> Value a
evaluate c = iterate (Refocus.termination c)
------------------------------------------------------------------------
-- Section 6: The Krivine machine
public export
IsValidEnv : Env g -> Type
public export
IsValidClosed : Closed a -> Type
IsValidClosed (Closure t env) = IsValidEnv env
IsValidClosed _ = Void
IsValidEnv [] = ()
IsValidEnv (t :: env) = (IsValidClosed t, IsValidEnv env)
public export
ValidEnv : Context -> Type
ValidEnv g = Subset (Env g) IsValidEnv
public export
ValidClosed : Ty -> Type
ValidClosed a = Subset (Closed a) IsValidClosed
namespace ValidClosed
public export
Closure : Term g a -> ValidEnv g -> ValidClosed a
Closure t (Element env pr) = Element (Closure t env) pr
public export
fstClosure : (t : Term g a) -> (env : ValidEnv g) ->
fst (Closure t env) === Closure t (fst env)
fstClosure t (Element env p) = Refl
public export
0 getContext : ValidClosed a -> Context
getContext (Element (Closure {g} t env) _) = g
public export
getEnv : (c : ValidClosed a) -> ValidEnv (getContext c)
getEnv (Element (Closure {g} _ env) pr) = Element env pr
public export
getTerm : (c : ValidClosed a) -> Term (getContext c) a
getTerm (Element (Closure t _) _) = t
public export
etaValidClosed : (c : ValidClosed a) -> c === Closure (getTerm c) (getEnv c)
etaValidClosed (Element (Closure t env) _) = Refl
namespace ValidEnv
public export
lookup : (env : ValidEnv g) -> Elem a g -> ValidClosed a
lookup (Element (t :: env) p) Here = Element t (fst p)
lookup (Element (t :: env) p) (There v) = lookup (Element env (snd p)) v
public export
fstLookup : (env : ValidEnv g) -> (v : Elem a g) ->
fst (lookup env v) === lookup (fst env) v
fstLookup (Element (t :: env) p) Here = Refl
fstLookup (Element (t :: env) p) (There v) = fstLookup (Element env (snd p)) v
public export
Nil : ValidEnv []
Nil = Element [] ()
public export
(::) : {a : Ty} -> ValidClosed a -> ValidEnv g -> ValidEnv (a :: g)
Element t p :: Element env q = Element (t :: env) (p, q)
public export
IsValidEvalContext : EvalContext a b -> Type
IsValidEvalContext [] = ()
IsValidEvalContext (t :: ctx) = (IsValidClosed t, IsValidEvalContext ctx)
public export
ValidEvalContext : (a, b : Ty) -> Type
ValidEvalContext a b = Subset (EvalContext a b) IsValidEvalContext
namespace ValidEvalContext
public export
Nil : ValidEvalContext a a
Nil = Element [] ()
public export
(::) : ValidClosed a -> ValidEvalContext b c -> ValidEvalContext (Arr a b) c
Element t p :: Element ctx q = Element (t :: ctx) (p, q)
public export
fstCons : (t : ValidClosed a) -> (ctx : ValidEvalContext b c) ->
fst (t :: ctx) === fst t :: fst ctx
fstCons (Element t p) (Element ctx q) = Refl
public export
[CONS] Biinjective ValidEvalContext.(::) where
biinjective
{x = Element t p} {y = Element t p}
{v = Element ts ps} {w = Element ts ps}
Refl = (Refl, Refl)
namespace ValidEvalContextView
public export
data View : ValidEvalContext a b -> Type where
Nil : View []
(::) : (t : ValidClosed a) -> (ctx : ValidEvalContext b c) ->
View (t :: ctx)
public export
irrelevantUnit : (t : ()) -> t === ()
irrelevantUnit () = Refl
public export
etaPair : (p : (a, b)) -> p === (fst p, snd p)
etaPair (x, y) = Refl
public export
view : (ctx : ValidEvalContext a b) -> View ctx
view (Element [] p) = rewrite irrelevantUnit p in []
view (Element (t :: ctx) p)
= rewrite etaPair p in
Element t (fst p) :: Element ctx (snd p)
namespace Machine
public export
data Trace : Term g a -> ValidEnv g -> ValidEvalContext a b -> Type where
Var : {env : ValidEnv g} -> {v : Elem a g} ->
Trace (getTerm (lookup env v)) (getEnv (lookup env v)) ctx ->
Trace (Var v) env ctx
App : {f : Term g (Arr a b)} -> {t : Term g a} ->
Trace f env (Closure t env :: ctx) ->
Trace (App f t) env ctx
Beta : {sc : Term (a :: g) b} ->
{arg : ValidClosed a} ->
{ctx : ValidEvalContext b c} ->
Trace sc (arg :: env) ctx ->
Trace (Lam sc) env (arg :: ctx)
Done : Trace (Lam sc) env []
data View : Trace t env ctx -> Type where
VVar : {0 env : ValidEnv g} -> {0 v : Elem a g} ->
(0 tr : Trace (getTerm (lookup env v)) (getEnv (lookup env v)) ctx) ->
View {t = Var v, env, ctx} (Var tr)
VApp : {0 f : Term g (Arr a b)} -> {0 t : Term g a} ->
{0 ctx : ValidEvalContext b c} ->
(0 tr : Trace f env (Closure t env :: ctx)) ->
View (App {f, t, env, ctx} tr)
VBeta : {0 sc : Term (a :: g) b} ->
{arg : ValidClosed a} ->
{ctx : ValidEvalContext b c} ->
(0 tr : Trace sc (arg :: env) ctx) ->
View (Beta {sc, arg, env, ctx} tr)
VDone : (sc : Term (a :: g) b) ->
View (Done {sc})
public export
vvar : (tr : Trace (Var v) env ctx) ->
(tr' : Trace ? ? ctx ** tr = Var tr')
vvar (Var tr) = (tr ** Refl)
public export
vapp : (tr : Trace (App f t) env ctx) ->
(tr' : Trace f env (Closure t env :: ctx) ** tr = App tr')
vapp (App tr) = (tr ** Refl)
public export
vlam0 : (eq : ctx = []) -> (tr : Trace (Lam sc) env ctx) -> tr ~=~ Machine.Done {sc, env}
vlam0 eq Done = Refl
public export
vlamS : {0 env : ValidEnv g} -> {0 arg : ValidClosed a} ->
{0 sc : Term (a :: g) b} -> {0 ctx' : ValidEvalContext b c} ->
(eq : ctx = ValidEvalContext.(::) arg ctx') ->
(tr : Trace (Lam sc) env ctx) ->
(tr' : Trace sc (arg :: env) ctx' ** tr ~=~ Machine.Beta {sc, arg, env} tr')
vlamS eq (Beta tr) with 0 (fst (biinjective @{CONS} eq))
_ | Refl with 0 (snd (biinjective @{CONS} eq))
_ | Refl = (tr ** Refl)
public export
view : (t : Term g a) -> (env : ValidEnv g) -> (ctx : ValidEvalContext a b) ->
(0 tr : Trace t env ctx) -> View tr
view (Var v) env ctx tr = rewrite snd (vvar tr) in VVar _
view (App f t) env ctx tr = rewrite snd (vapp tr) in VApp _
view (Lam sc) env ctx@_ tr with (view ctx)
_ | [] = rewrite vlam0 Refl tr in VDone sc
_ | (arg :: ctx') = rewrite snd (vlamS {env, arg, sc, ctx'} Refl tr) in VBeta _
public export
refocus : {a : Ty} ->
{t : Term g a} -> {env : ValidEnv g} ->
{ctx : ValidEvalContext a b} ->
(0 _ : Trace t env ctx) -> Value b
refocus tr@_ with (view _ _ _ tr)
_ | VVar tr' = refocus tr'
_ | VApp tr' = refocus tr'
_ | VBeta tr' = refocus tr'
_ | VDone sc = Val (Closure (Lam sc) (fst env)) Lam
-- This is way TOO nasty because we don't have eta for records :((
public export
correctness :
{a : Ty} ->
(ctx : ValidEvalContext a b) ->
(t : Term g a) ->
(env : ValidEnv g) ->
(trold : Refocus.Trace (refocus (fst ctx) (Closure t (fst env)))) ->
(trnew : Machine.Trace t env ctx) ->
refocus trnew === Refocus.iterate trold
correctness ctx (Var v) env (Step (fst ctx) (RVar v (fst env)) trold) (Var trnew)
with (lookup env v) proof eq
_ | Element (Closure t' env') penv'
= correctness ctx t' (Element env' penv')
(rewrite sym (cong fst eq) in rewrite fstLookup env v in trold)
trnew
correctness ctx (App f t) env (Step (fst ctx) (RApp f t (fst env)) trold) (App trnew)
= correctness (Closure t env :: ctx) f env
(rewrite fstCons (Closure t env) ctx in rewrite fstClosure t env in trold)
trnew
correctness .(Element arg parg :: Element ctx pctx) (Lam sc) (Element env penv)
(Step ctx (Beta sc env arg) trold)
(Beta {arg = Element arg parg, ctx = Element ctx pctx} trnew)
= correctness (Element ctx pctx) sc (Element arg parg :: Element env penv)
trold
trnew
correctness (Element [] _) (Lam sc) env (Done _ _) tr
-- DISGUSTING
= case tr of
Beta {arg = Element _ _, ctx = Element _ _} _ impossible
Done => Refl
-- Another disgusgint proof because of a mix of:
-- * lack of eta and the coverage
-- * invalid "Dot pattern not valid here (Not LHS)" on the LHS
-- * coverage checker being confused
public export
trace : {a : Ty} -> (ctx : ValidEvalContext a b) ->
(t : Term g a) -> (env : ValidEnv g) ->
Refocus.Trace (refocus (fst ctx) (Closure t (fst env))) ->
Trace t env ctx
trace ctx (Var v) env (Step (fst ctx) (RVar v (fst env)) tr)
with (fstLookup env v) | (lookup env v) proof eq
_ | lemma | Element (Closure t' env') p
with (lookup (fst env) v)
trace ctx (Var v) env (Step (fst ctx) (RVar v (fst env)) tr)
| Refl | Element (Closure t' env') penv' | .(Closure t' env')
= Var (rewrite eq in trace ctx t' (Element env' penv') tr)
trace (Element ctx pctx) (App f t) (Element env penv) (Step .(ctx) (RApp f t env) tr)
= App (trace (Closure t (Element env penv) :: Element ctx pctx) f (Element env penv) tr)
trace (Element (arg :: ctx) pctx) (Lam sc) (Element env penv) tr
= case tr of
Done _ _ impossible
(Step ctx (Beta sc env arg) tr) =>
rewrite etaPair pctx in
Beta {arg = Element arg (fst pctx), ctx = Element ctx (snd pctx)}
(trace (Element ctx (snd pctx)) sc (Element (arg :: env) (fst pctx, penv)) tr)
trace (Element [] pctx) (Lam sc) env tr
= case tr of
Beta {arg = Element _ _, ctx = Element _ _} _ impossible
Done sc .(fst env) => rewrite irrelevantUnit pctx in Done
public export
termination : {a : Ty} -> (t : Term [] a) -> Trace t [] []
termination t
= trace [] t []
$ rewrite refocusCorrect [] (Closure t []) in
Refocus.termination (Closure t [])
public export
evaluate : {a : Ty} -> Term [] a -> Value a
evaluate t = Machine.refocus (termination t)