2020-05-18 15:59:07 +03:00
|
|
|
module Text.Parser
|
|
|
|
|
2020-06-12 00:14:11 +03:00
|
|
|
import Data.Bool
|
2020-05-18 15:59:07 +03:00
|
|
|
import Data.List
|
|
|
|
import Data.Nat
|
|
|
|
|
|
|
|
import public Text.Parser.Core
|
|
|
|
import public Text.Quantity
|
|
|
|
import public Text.Token
|
|
|
|
|
|
|
|
||| Parse a terminal based on a kind of token.
|
|
|
|
export
|
|
|
|
match : (Eq k, TokenKind k) =>
|
|
|
|
(kind : k) ->
|
|
|
|
Grammar (Token k) True (TokType kind)
|
|
|
|
match kind = terminal "Unrecognised input" $
|
|
|
|
\(Tok kind' text) => if kind' == kind
|
|
|
|
then Just $ tokValue kind text
|
|
|
|
else Nothing
|
|
|
|
|
|
|
|
||| Optionally parse a thing, with a default value if the grammar doesn't
|
|
|
|
||| match. May match the empty input.
|
|
|
|
export
|
|
|
|
option : {c : Bool} ->
|
|
|
|
(def : a) -> (p : Grammar tok c a) ->
|
|
|
|
Grammar tok False a
|
|
|
|
option {c = False} def p = p <|> pure def
|
|
|
|
option {c = True} def p = p <|> pure def
|
|
|
|
|
|
|
|
||| Optionally parse a thing.
|
|
|
|
||| To provide a default value, use `option` instead.
|
|
|
|
export
|
|
|
|
optional : {c : _} ->
|
|
|
|
(p : Grammar tok c a) ->
|
|
|
|
Grammar tok False (Maybe a)
|
|
|
|
optional p = option Nothing (map Just p)
|
|
|
|
|
|
|
|
||| Try to parse one thing or the other, producing a value that indicates
|
|
|
|
||| which option succeeded. If both would succeed, the left option
|
|
|
|
||| takes priority.
|
|
|
|
export
|
|
|
|
choose : {c1, c2 : _} ->
|
|
|
|
(l : Grammar tok c1 a) ->
|
|
|
|
(r : Grammar tok c2 b) ->
|
|
|
|
Grammar tok (c1 && c2) (Either a b)
|
|
|
|
choose l r = map Left l <|> map Right r
|
|
|
|
|
|
|
|
||| Produce a grammar by applying a function to each element of a container,
|
|
|
|
||| then try each resulting grammar until the first one succeeds. Fails if the
|
|
|
|
||| container is empty.
|
|
|
|
export
|
|
|
|
choiceMap : {c : Bool} ->
|
|
|
|
(a -> Grammar tok c b) ->
|
|
|
|
Foldable t => t a ->
|
|
|
|
Grammar tok c b
|
|
|
|
choiceMap {c} f xs = foldr (\x, acc => rewrite sym (andSameNeutral c) in
|
|
|
|
f x <|> acc)
|
|
|
|
(fail "No more options") xs
|
|
|
|
|
|
|
|
%hide Prelude.(>>=)
|
|
|
|
|
|
|
|
||| Try each grammar in a container until the first one succeeds.
|
|
|
|
||| Fails if the container is empty.
|
|
|
|
export
|
|
|
|
choice : {c : _} ->
|
|
|
|
Foldable t => t (Grammar tok c a) ->
|
|
|
|
Grammar tok c a
|
|
|
|
choice = Parser.choiceMap id
|
|
|
|
|
|
|
|
mutual
|
|
|
|
||| Parse one or more things
|
|
|
|
export
|
|
|
|
some : Grammar tok True a ->
|
|
|
|
Grammar tok True (List a)
|
|
|
|
some p = pure (!p :: !(many p))
|
|
|
|
|
|
|
|
||| Parse zero or more things (may match the empty input)
|
|
|
|
export
|
|
|
|
many : Grammar tok True a ->
|
|
|
|
Grammar tok False (List a)
|
|
|
|
many p = option [] (some p)
|
|
|
|
|
|
|
|
||| Parse one or more instances of `p`, returning the parsed items and proof
|
|
|
|
||| that the resulting list is non-empty.
|
|
|
|
export
|
|
|
|
some' : (p : Grammar tok True a) ->
|
|
|
|
Grammar tok True (xs : List a ** NonEmpty xs)
|
|
|
|
some' p = pure (!p :: !(many p) ** IsNonEmpty)
|
|
|
|
|
|
|
|
mutual
|
|
|
|
private
|
|
|
|
count1 : (q : Quantity) ->
|
|
|
|
(p : Grammar tok True a) ->
|
|
|
|
Grammar tok True (List a)
|
|
|
|
count1 q p = do x <- p
|
|
|
|
seq (count q p)
|
|
|
|
(\xs => pure (x :: xs))
|
|
|
|
|
|
|
|
||| Parse `p`, repeated as specified by `q`, returning the list of values.
|
|
|
|
export
|
|
|
|
count : (q : Quantity) ->
|
|
|
|
(p : Grammar tok True a) ->
|
|
|
|
Grammar tok (isSucc (min q)) (List a)
|
|
|
|
count (Qty Z Nothing) p = many p
|
|
|
|
count (Qty Z (Just Z)) _ = pure []
|
|
|
|
count (Qty Z (Just (S max))) p = option [] $ count1 (atMost max) p
|
|
|
|
count (Qty (S min) Nothing) p = count1 (atLeast min) p
|
|
|
|
count (Qty (S min) (Just Z)) _ = fail "Quantity out of order"
|
2020-05-20 17:36:50 +03:00
|
|
|
count (Qty (S min) (Just (S max))) p = count1 (between min max) p
|
2020-05-18 15:59:07 +03:00
|
|
|
|
|
|
|
mutual
|
|
|
|
||| Parse one or more instances of `p` until `end` succeeds, returning the
|
|
|
|
||| list of values from `p`. Guaranteed to consume input.
|
|
|
|
export
|
|
|
|
someTill : {c : Bool} ->
|
|
|
|
(end : Grammar tok c e) ->
|
|
|
|
(p : Grammar tok True a) ->
|
|
|
|
Grammar tok True (List a)
|
|
|
|
someTill {c} end p = do x <- p
|
|
|
|
seq (manyTill end p)
|
|
|
|
(\xs => pure (x :: xs))
|
|
|
|
|
|
|
|
||| Parse zero or more instances of `p` until `end` succeeds, returning the
|
|
|
|
||| list of values from `p`. Guaranteed to consume input if `end` consumes.
|
|
|
|
export
|
|
|
|
manyTill : {c : Bool} ->
|
|
|
|
(end : Grammar tok c e) ->
|
|
|
|
(p : Grammar tok True a) ->
|
|
|
|
Grammar tok c (List a)
|
|
|
|
manyTill {c} end p = rewrite sym (andTrueNeutral c) in
|
|
|
|
map (const []) end <|> someTill end p
|
|
|
|
|
|
|
|
||| Parse one or more instances of `p` until `end` succeeds, returning the
|
|
|
|
||| list of values from `p`, along with a proof that the resulting list is
|
|
|
|
||| non-empty.
|
|
|
|
export
|
|
|
|
someTill' : {c : Bool} ->
|
|
|
|
(end : Grammar tok c e) ->
|
|
|
|
(p : Grammar tok True a) ->
|
|
|
|
Grammar tok True (xs : List a ** NonEmpty xs)
|
|
|
|
someTill' end p
|
|
|
|
= do x <- p
|
|
|
|
seq (manyTill end p)
|
|
|
|
(\xs => pure (x :: xs ** IsNonEmpty))
|
|
|
|
|
|
|
|
mutual
|
|
|
|
||| Parse one or more instance of `skip` until `p` is encountered,
|
|
|
|
||| returning its value.
|
|
|
|
export
|
|
|
|
afterSome : {c : _} ->
|
|
|
|
(skip : Grammar tok True s) ->
|
|
|
|
(p : Grammar tok c a) ->
|
|
|
|
Grammar tok True a
|
|
|
|
afterSome skip p = do skip
|
|
|
|
afterMany skip p
|
|
|
|
|
|
|
|
||| Parse zero or more instance of `skip` until `p` is encountered,
|
|
|
|
||| returning its value.
|
|
|
|
export
|
|
|
|
afterMany : {c : Bool} ->
|
|
|
|
(skip : Grammar tok True s) ->
|
|
|
|
(p : Grammar tok c a) ->
|
|
|
|
Grammar tok c a
|
|
|
|
afterMany {c} skip p = rewrite sym (andTrueNeutral c) in
|
|
|
|
p <|> afterSome skip p
|
|
|
|
|
|
|
|
||| Parse one or more things, each separated by another thing.
|
|
|
|
export
|
|
|
|
sepBy1 : {c : Bool} ->
|
|
|
|
(sep : Grammar tok True s) ->
|
|
|
|
(p : Grammar tok c a) ->
|
|
|
|
Grammar tok c (List a)
|
|
|
|
sepBy1 {c} sep p = rewrite sym (orFalseNeutral c) in
|
|
|
|
[| p :: many (sep *> p) |]
|
|
|
|
|
|
|
|
||| Parse zero or more things, each separated by another thing. May
|
|
|
|
||| match the empty input.
|
|
|
|
export
|
|
|
|
sepBy : {c : _} ->
|
|
|
|
(sep : Grammar tok True s) ->
|
|
|
|
(p : Grammar tok c a) ->
|
|
|
|
Grammar tok False (List a)
|
|
|
|
sepBy sep p = option [] $ sepBy1 sep p
|
|
|
|
|
|
|
|
||| Parse one or more instances of `p` separated by `sep`, returning the
|
|
|
|
||| parsed items and proof that the resulting list is non-empty.
|
|
|
|
export
|
|
|
|
sepBy1' : {c : Bool} ->
|
|
|
|
(sep : Grammar tok True s) ->
|
|
|
|
(p : Grammar tok c a) ->
|
|
|
|
Grammar tok c (xs : List a ** NonEmpty xs)
|
|
|
|
sepBy1' {c} sep p
|
|
|
|
= rewrite sym (orFalseNeutral c) in
|
|
|
|
seq p (\x => do xs <- many (sep *> p)
|
|
|
|
pure (x :: xs ** IsNonEmpty))
|
|
|
|
|
|
|
|
||| Parse one or more instances of `p` separated by and optionally terminated by
|
|
|
|
||| `sep`.
|
|
|
|
export
|
|
|
|
sepEndBy1 : {c : Bool} ->
|
|
|
|
(sep : Grammar tok True s) ->
|
|
|
|
(p : Grammar tok c a) ->
|
|
|
|
Grammar tok c (List a)
|
|
|
|
sepEndBy1 {c} sep p = rewrite sym (orFalseNeutral c) in
|
|
|
|
sepBy1 sep p <* optional sep
|
|
|
|
|
|
|
|
||| Parse zero or more instances of `p`, separated by and optionally terminated
|
|
|
|
||| by `sep`. Will not match a separator by itself.
|
|
|
|
export
|
|
|
|
sepEndBy : {c : _} ->
|
|
|
|
(sep : Grammar tok True s) ->
|
|
|
|
(p : Grammar tok c a) ->
|
|
|
|
Grammar tok False (List a)
|
|
|
|
sepEndBy sep p = option [] $ sepEndBy1 sep p
|
|
|
|
|
|
|
|
||| Parse zero or more instances of `p`, separated by and optionally terminated
|
|
|
|
||| by `sep`, returning the parsed items and a proof that the resulting list
|
|
|
|
||| is non-empty.
|
|
|
|
export
|
|
|
|
sepEndBy1' : {c : Bool} ->
|
|
|
|
(sep : Grammar tok True s) ->
|
|
|
|
(p : Grammar tok c a) ->
|
|
|
|
Grammar tok c (xs : List a ** NonEmpty xs)
|
|
|
|
sepEndBy1' {c} sep p = rewrite sym (orFalseNeutral c) in
|
|
|
|
sepBy1' sep p <* optional sep
|
|
|
|
|
|
|
|
||| Parse one or more instances of `p`, separated and terminated by `sep`.
|
|
|
|
export
|
|
|
|
endBy1 : {c : Bool} ->
|
|
|
|
(sep : Grammar tok True s) ->
|
|
|
|
(p : Grammar tok c a) ->
|
|
|
|
Grammar tok True (List a)
|
|
|
|
endBy1 {c} sep p = some $ rewrite sym (orTrueTrue c) in
|
|
|
|
p <* sep
|
|
|
|
|
|
|
|
export
|
|
|
|
endBy : {c : _} ->
|
|
|
|
(sep : Grammar tok True s) ->
|
|
|
|
(p : Grammar tok c a) ->
|
|
|
|
Grammar tok False (List a)
|
|
|
|
endBy sep p = option [] $ endBy1 sep p
|
|
|
|
|
|
|
|
||| Parse zero or more instances of `p`, separated and terminated by `sep`,
|
|
|
|
||| returning the parsed items and a proof that the resulting list is non-empty.
|
|
|
|
export
|
|
|
|
endBy1' : {c : Bool} ->
|
|
|
|
(sep : Grammar tok True s) ->
|
|
|
|
(p : Grammar tok c a) ->
|
|
|
|
Grammar tok True (xs : List a ** NonEmpty xs)
|
|
|
|
endBy1' {c} sep p = some' $ rewrite sym (orTrueTrue c) in
|
|
|
|
p <* sep
|
|
|
|
|
|
|
|
||| Parse an instance of `p` that is between `left` and `right`.
|
|
|
|
export
|
|
|
|
between : {c : _} ->
|
|
|
|
(left : Grammar tok True l) ->
|
2020-07-14 16:33:22 +03:00
|
|
|
(right : Inf (Grammar tok True r)) ->
|
|
|
|
(p : Inf (Grammar tok c a)) ->
|
2020-05-18 15:59:07 +03:00
|
|
|
Grammar tok True a
|
|
|
|
between left right contents = left *> contents <* right
|