Idris2/libs/contrib/Data/Nat/Fib.idr

51 lines
1.3 KiB
Idris
Raw Normal View History

||| Properties of Fibonacci functions
module Data.Nat.Fib
import Data.Nat
%default total
||| Recursive definition of Fibonacci.
fibRec : Nat -> Nat
fibRec Z = Z
fibRec (S Z) = S Z
fibRec (S (S k)) = fibRec (S k) + fibRec k
||| Accumulator for fibItr.
fibAcc : Nat -> Nat -> Nat -> Nat
fibAcc Z a _ = a
fibAcc (S k) a b = fibAcc k b (a + b)
||| Iterative definition of Fibonacci.
fibItr : Nat -> Nat
fibItr n = fibAcc n 0 1
||| Addend shuffling lemma.
plusLemma : (a, b, c, d : Nat) -> (a + b) + (c + d) = (a + c) + (b + d)
plusLemma a b c d =
rewrite sym $ plusAssociative a b (c + d) in
rewrite plusAssociative b c d in
rewrite plusCommutative b c in
rewrite sym $ plusAssociative c b d in
plusAssociative a c (b + d)
||| Helper lemma for fibacc.
fibAdd : (n, a, b, c, d : Nat) ->
fibAcc n a b + fibAcc n c d = fibAcc n (a + c) (b + d)
fibAdd Z _ _ _ _ = Refl
fibAdd (S Z) _ _ _ _ = Refl
fibAdd (S (S k)) a b c d =
rewrite fibAdd k (a + b) (b + (a + b)) (c + d) (d + (c + d)) in
rewrite plusLemma b (a + b) d (c + d) in
rewrite plusLemma a b c d in
Refl
||| Iterative and recursive Fibonacci definitions are equivalent.
fibEq : (n : Nat) -> fibRec n = fibItr n
fibEq Z = Refl
fibEq (S Z) = Refl
fibEq (S (S k)) =
rewrite fibEq k in
rewrite fibEq (S k) in
fibAdd k 1 1 0 1