Idris2/libs/base/Syntax/PreorderReasoning.idr

55 lines
1.5 KiB
Idris
Raw Normal View History

||| Until Idris2 starts supporting the 'syntax' keyword, here's a
||| poor-man's equational reasoning
2020-05-18 15:59:07 +03:00
module Syntax.PreorderReasoning
infixl 0 ~~,~=
prefix 1 |~
infix 1 ...,..<,..>,.=.,.=<,.=>
2020-05-18 15:59:07 +03:00
|||Slightly nicer syntax for justifying equations:
|||```
||| |~ a
||| ~~ b ...( justification )
|||```
|||and we can think of the `...( justification )` as ASCII art for a thought bubble.
public export
data Step : a -> b -> Type where
(...) : (0 y : a) -> (0 step : x ~=~ y) -> Step x y
2020-05-18 15:59:07 +03:00
public export
data FastDerivation : (x : a) -> (y : b) -> Type where
(|~) : (0 x : a) -> FastDerivation x x
(~~) : FastDerivation x y -> (step : Step y z) -> FastDerivation x z
public export
Calc : {0 x : a} -> {0 y : b} -> (0 der : FastDerivation x y) -> x ~=~ y
Calc der = irrelevantEq $ Calc' der
where
Calc' : {0 x : c} -> {0 y : d} -> FastDerivation x y -> x ~=~ y
Calc' (|~ x) = Refl
Calc' ((~~) der (_ ...(Refl))) = Calc' der
2020-05-18 15:59:07 +03:00
{- -- requires import Data.Nat
0
2020-05-18 15:59:07 +03:00
example : (x : Nat) -> (x + 1) + 0 = 1 + x
example x =
Calc $
|~ (x + 1) + 0
~~ x+1 ...( plusZeroRightNeutral $ x + 1 )
~~ 1+x ...( plusCommutative x 1 )
-}
-- Smart constructors
public export
(..<) : (0 y : a) -> {0 x : b} -> (0 step : y ~=~ x) -> Step x y
(y ..<(prf)) {x} = (y ...(sym prf))
public export
(..>) : (0 y : a) -> (0 step : x ~=~ y) -> Step x y
(..>) = (...)
||| Use a judgemental equality but is not trivial to the reader.
public export
(~=) : FastDerivation x y -> (0 z : dom) -> {auto 0 xEqy : y = z} -> FastDerivation x z
(~=) der y {xEqy = Refl} = der ~~ y ... Refl