Idris2/libs/prelude/Prelude/Interfaces.idr

269 lines
8.3 KiB
Idris
Raw Normal View History

module Prelude.Interfaces
import Builtin
import Prelude.Basics
import Prelude.Num
import Prelude.Ops
%default total
-------------
-- ALGEBRA --
-------------
||| Sets equipped with a single binary operation that is associative. Must
||| satisfy the following laws:
|||
||| + Associativity of `<+>`:
||| forall a b c, a <+> (b <+> c) == (a <+> b) <+> c
public export
interface Semigroup ty where
(<+>) : ty -> ty -> ty
||| Sets equipped with a single binary operation that is associative, along with
||| a neutral element for that binary operation. Must satisfy the following
||| laws:
|||
||| + Associativity of `<+>`:
||| forall a b c, a <+> (b <+> c) == (a <+> b) <+> c
||| + Neutral for `<+>`:
||| forall a, a <+> neutral == a
||| forall a, neutral <+> a == a
public export
interface Semigroup ty => Monoid ty where
neutral : ty
export
shiftL : Int -> Int -> Int
shiftL = prim__shl_Int
export
shiftR : Int -> Int -> Int
shiftR = prim__shr_Int
----------------------------------------------
-- FUNCTOR, APPLICATIVE, ALTERNATIVE, MONAD --
----------------------------------------------
||| Functors allow a uniform action over a parameterised type.
||| @ f a parameterised type
public export
interface Functor f where
||| Apply a function across everything of type 'a' in a parameterised type
||| @ f the parameterised type
||| @ func the function to apply
map : (func : a -> b) -> f a -> f b
||| An infix alias for `map`, applying a function across everything of type 'a'
||| in a parameterised type.
||| @ f the parameterised type
||| @ func the function to apply
public export
(<$>) : Functor f => (func : a -> b) -> f a -> f b
(<$>) func x = map func x
||| Run something for effects, throwing away the return value.
public export
ignore : Functor f => f a -> f ()
ignore = map (const ())
public export
interface Functor f => Applicative f where
pure : a -> f a
(<*>) : f (a -> b) -> f a -> f b
public export
(<*) : Applicative f => f a -> f b -> f a
a <* b = map const a <*> b
public export
(*>) : Applicative f => f a -> f b -> f b
a *> b = map (const id) a <*> b
%allow_overloads pure
%allow_overloads (<*)
%allow_overloads (*>)
public export
interface Applicative f => Alternative f where
empty : f a
(<|>) : f a -> f a -> f a
public export
interface Applicative m => Monad m where
||| Also called `bind`.
(>>=) : m a -> (a -> m b) -> m b
||| Also called `flatten` or mu.
join : m (m a) -> m a
-- default implementations
(>>=) x f = join (f <$> x)
join x = x >>= id
%allow_overloads (>>=)
||| `guard a` is `pure ()` if `a` is `True` and `empty` if `a` is `False`.
public export
guard : Alternative f => Bool -> f ()
guard x = if x then pure () else empty
||| Conditionally execute an applicative expression.
public export
when : Applicative f => Bool -> Lazy (f ()) -> f ()
when True f = f
when False f = pure ()
---------------------------
-- FOLDABLE, TRAVERSABLE --
---------------------------
||| The `Foldable` interface describes how you can iterate over the elements in
||| a parameterised type and combine the elements together, using a provided
||| function, into a single result.
||| @ t The type of the 'Foldable' parameterised type.
public export
interface Foldable (t : Type -> Type) where
||| Successively combine the elements in a parameterised type using the
||| provided function, starting with the element that is in the final position
||| i.e. the right-most position.
||| @ func The function used to 'fold' an element into the accumulated result
||| @ init The starting value the results are being combined into
||| @ input The parameterised type
foldr : (func : elem -> acc -> acc) -> (init : acc) -> (input : t elem) -> acc
||| The same as `foldr` but begins the folding from the element at the initial
||| position in the data structure i.e. the left-most position.
||| @ func The function used to 'fold' an element into the accumulated result
||| @ init The starting value the results are being combined into
||| @ input The parameterised type
foldl : (func : acc -> elem -> acc) -> (init : acc) -> (input : t elem) -> acc
foldl f z t = foldr (flip (.) . flip f) id t z
||| Similar to `foldl`, but uses a function wrapping its result in a `Monad`.
||| Consequently, the final value is wrapped in the same `Monad`.
public export
foldlM : (Foldable t, Monad m) => (funcM: a -> b -> m a) -> (init: a) -> (input: t b) -> m a
foldlM fm a0 = foldl (\ma,b => ma >>= flip fm b) (pure a0)
||| Combine each element of a structure into a monoid.
public export
concat : (Foldable t, Monoid a) => t a -> a
concat = foldr (<+>) neutral
||| Combine into a monoid the collective results of applying a function to each
||| element of a structure.
public export
concatMap : (Foldable t, Monoid m) => (a -> m) -> t a -> m
concatMap f = foldr ((<+>) . f) neutral
||| The conjunction of all elements of a structure containing lazy boolean
||| values. `and` short-circuits from left to right, evaluating until either an
||| element is `False` or no elements remain.
public export
and : Foldable t => t (Lazy Bool) -> Bool
and = foldl (&&) True
||| The disjunction of all elements of a structure containing lazy boolean
||| values. `or` short-circuits from left to right, evaluating either until an
||| element is `True` or no elements remain.
public export
or : Foldable t => t (Lazy Bool) -> Bool
or = foldl (||) False
||| The disjunction of the collective results of applying a predicate to all
||| elements of a structure. `any` short-circuits from left to right.
public export
any : Foldable t => (a -> Bool) -> t a -> Bool
any p = foldl (\x,y => x || p y) False
||| The disjunction of the collective results of applying a predicate to all
||| elements of a structure. `all` short-circuits from left to right.
public export
all : Foldable t => (a -> Bool) -> t a -> Bool
all p = foldl (\x,y => x && p y) True
||| Add together all the elements of a structure.
public export
sum : (Foldable t, Num a) => t a -> a
sum = foldr (+) 0
||| Add together all the elements of a structure.
||| Same as `sum` but tail recursive.
export
sum' : (Foldable t, Num a) => t a -> a
sum' = foldl (+) 0
||| Multiply together all elements of a structure.
public export
product : (Foldable t, Num a) => t a -> a
product = foldr (*) 1
||| Multiply together all elements of a structure.
||| Same as `product` but tail recursive.
export
product' : (Foldable t, Num a) => t a -> a
product' = foldl (*) 1
||| Map each element of a structure to a computation, evaluate those
||| computations and discard the results.
public export
traverse_ : (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
traverse_ f = foldr ((*>) . f) (pure ())
||| Evaluate each computation in a structure and discard the results.
public export
sequence_ : (Foldable t, Applicative f) => t (f a) -> f ()
sequence_ = foldr (*>) (pure ())
||| Like `traverse_` but with the arguments flipped.
public export
for_ : (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
for_ = flip traverse_
||| Fold using Alternative.
|||
||| If you have a left-biased alternative operator `<|>`, then `choice` performs
||| left-biased choice from a list of alternatives, which means that it
||| evaluates to the left-most non-`empty` alternative.
|||
||| If the list is empty, or all values in it are `empty`, then it evaluates to
||| `empty`.
|||
||| Example:
|||
||| ```
||| -- given a parser expression like:
||| expr = literal <|> keyword <|> funcall
|||
||| -- choice lets you write this as:
||| expr = choice [literal, keyword, funcall]
||| ```
|||
||| Note: In Haskell, `choice` is called `asum`.
public export
choice : (Foldable t, Alternative f) => t (f a) -> f a
choice = foldr (<|>) empty
||| A fused version of `choice` and `map`.
public export
choiceMap : (Foldable t, Alternative f) => (a -> f b) -> t a -> f b
choiceMap f = foldr (\e, a => f e <|> a) empty
public export
interface (Functor t, Foldable t) => Traversable (t : Type -> Type) where
||| Map each element of a structure to a computation, evaluate those
||| computations and combine the results.
traverse : Applicative f => (a -> f b) -> t a -> f (t b)
||| Evaluate each computation in a structure and collect the results.
public export
sequence : (Traversable t, Applicative f) => t (f a) -> f (t a)
sequence = traverse id
||| Like `traverse` but with the arguments flipped.
public export
for : (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
for = flip traverse