Idris2/libs/contrib/Data/Container.idr

360 lines
13 KiB
Idris
Raw Normal View History

------------------------------------------------------------------------
-- This module is based on the following papers:
-- Categories of Containers
-- Abbott, Altenkirch, Ghani
-- Derivatives of Containers
-- Abbott, Altenkirch, Ghani, McBride
------------------------------------------------------------------------
module Data.Container
import Data.Either
import Decidable.Equality
%default total
------------------------------------------------------------------------
-- Container and their morphisms
-- * Extension is a functor from Container to Type
-- Objects of the category of containers
namespace Container
public export
record Container where
constructor MkContainer
Shape : Type
Position : Shape -> Type
public export
record Extension (c : Container) (x : Type) where
constructor MkExtension
shape : Shape c
payloads : Position c shape -> x
||| The image of a container by @Extension@ is a functor
public export
Functor (Extension c) where map f (MkExtension s p) = MkExtension s (f . p)
-- Morphisms of the category of containers
namespace Morphism
public export
record Morphism (c, d : Container) where
constructor MkMorphism
shapeMorphism : Shape c -> Shape d
positionMorphism : {s : Shape c} -> Position d (shapeMorphism s) -> Position c s
public export
Extension : Morphism c d -> Extension c x -> Extension d x
Extension phi (MkExtension s p)
= MkExtension (shapeMorphism phi s) (p . positionMorphism phi)
------------------------------------------------------------------------
-- Combinators to build containers
namespace Combinators
-- Constant
public export
Const : Type -> Container
Const k = MkContainer k (const Void)
export
toConst : k -> Extension (Const k) x
toConst v = MkExtension v absurd
export
fromConst : Extension (Const k) x -> k
fromConst (MkExtension v _) = v
-- Identity
public export
Identity : Container
Identity = MkContainer () (\ () => ())
export
toIdentity : x -> Extension Identity x
toIdentity v = MkExtension () (const v)
export
fromIdentity : Extension Identity x -> x
fromIdentity (MkExtension () chld) = chld ()
-- Composition
public export
Compose : (d, c : Container) -> Container
Compose d c = MkContainer
(Extension d (Shape c))
(\ (MkExtension shp chld) => (p : Position d shp ** Position c (chld p)))
export
toCompose : (Extension d . Extension c) x -> Extension (Compose d c) x
toCompose (MkExtension shp1 chld)
= MkExtension (MkExtension shp1 (shape . chld)) (\ (p ** q) => payloads (chld p) q)
export
fromCompose : Extension (Compose d c) x -> (Extension d . Extension c) x
fromCompose (MkExtension (MkExtension shp1 shp2) chld)
= MkExtension shp1 (\ p => MkExtension (shp2 p) (\ q => chld (p ** q)))
-- Direct sum
public export
Sum : (c, d : Container) -> Container
Sum c d = MkContainer (Either (Shape c) (Shape d)) (either (Position c) (Position d))
export
toSum : Either (Extension c x) (Extension d x) -> Extension (Sum c d) x
toSum (Left (MkExtension shp chld)) = MkExtension (Left shp) chld
toSum (Right (MkExtension shp chld)) = MkExtension (Right shp) chld
export
fromSum : Extension (Sum c d) x -> Either (Extension c x) (Extension d x)
fromSum (MkExtension (Left shp) chld) = Left (MkExtension shp chld)
fromSum (MkExtension (Right shp) chld) = Right (MkExtension shp chld)
-- Pairing
public export
Pair : (c, d : Container) -> Container
Pair c d = MkContainer (Shape c, Shape d) (\ (p, q) => Either (Position c p) (Position d q))
export
toPair : (Extension c x, Extension d x) -> Extension (Pair c d) x
toPair (MkExtension shp1 chld1, MkExtension shp2 chld2)
= MkExtension (shp1, shp2) (either chld1 chld2)
export
fromPair : Extension (Pair c d) x -> (Extension c x, Extension d x)
fromPair (MkExtension (shp1, shp2) chld)
= (MkExtension shp1 (chld . Left), MkExtension shp2 (chld . Right))
-- Branching over a Type
public export
Exponential : Type -> Container -> Container
Exponential k c = MkContainer (k -> Shape c) (\ p => (v : k ** Position c (p v)))
export
toExponential : (k -> Extension c x) -> Extension (Exponential k c) x
toExponential f = MkExtension (shape . f) (\ (v ** p) => payloads (f v) p)
export
fromExponential : Extension (Exponential k c) x -> (k -> Extension c x)
fromExponential (MkExtension shp chld) k = MkExtension (shp k) (\ p => chld (k ** p))
------------------------------------------------------------------------
-- Taking various fixpoints of containers
namespace Initial
public export
data W : Container -> Type where
MkW : Extension c (W c) -> W c
export
map : Morphism c d -> W c -> W d
map f (MkW (MkExtension shp chld)) = MkW $ Extension f (MkExtension shp (\ p => map f (chld p)))
-- Container.map inlined because of -------------------^
-- termination checking
export
foldr : (Extension c x -> x) -> W c -> x
foldr alg (MkW (MkExtension shp chld)) = alg (MkExtension shp (\ p => foldr alg (chld p)))
export
para : (Extension c (x, W c) -> x) -> W c -> x
para alg (MkW (MkExtension shp chld)) = alg (MkExtension shp (\ p => let w = chld p in (para alg w, w)))
namespace Monad
||| @Free@ is a wrapper around @W@ to make it inference friendly.
||| Without this wrapper, neither @pure@ nor @bind@ are able to infer their @c@ argument.
public export
record Free (c : Container) (x : Type) where
constructor MkFree
runFree : W (Sum c (Const x))
export
pure : x -> Free c x
pure x = MkFree $ MkW (toSum (Right (toConst x)))
export
(>>=) : Free c x -> (x -> Free c y) -> Free c y
(>>=) (MkFree mx) k = foldr (alg . fromSum {c} {d = Const x}) mx where
alg : Either (Extension c (Free c y)) (Extension (Const x) (Free c y)) -> Free c y
alg = either (MkFree . MkW . toSum {c} {d = Const y} . Left . map (runFree {c}))
(k . fromConst {k = x})
export
join : Free c (Free c x) -> Free c x
join = (>>= id)
namespace Final
public export
data M : Container -> Type where
MkM : Extension c (Inf (M c)) -> M c
export
unfoldr : (s -> Extension c s) -> s -> M c
unfoldr next seed =
let (MkExtension shp chld) = next seed in
MkM (MkExtension shp (\ p => unfoldr next (chld p)))
namespace Comonad
||| @Cofree@ is a wrapper around @M@ to make it inference friendly.
||| Without this wrapper, neither @extract@ nor @extend@ are able to infer their @c@ argument.
public export
record Cofree (c : Container) (x : Type) where
constructor MkCofree
runCofree : M (Pair (Const x) c)
export
extract : Cofree c x -> x
extract (MkCofree (MkM m)) = fst (shape m)
export
extend : (Cofree c a -> b) -> Cofree c a -> Cofree c b
extend alg = MkCofree . unfoldr next . runCofree where
next : M (Pair (Const a) c) -> Extension (Pair (Const b) c) (M (Pair (Const a) c))
next m@(MkM layer) =
let (_, (MkExtension shp chld)) = fromPair {c = Const a} layer in
let b = toConst (alg (MkCofree m)) in
toPair (b, MkExtension shp (\ p => chld p))
-- Eta-expanded to force Inf ------^
export
duplicate : Cofree c a -> Cofree c (Cofree c a)
duplicate = extend id
------------------------------------------------------------------------
-- Derivative
namespace Derivative
public export
Derivative : Container -> Container
Derivative c = MkContainer
(s : Shape c ** Position c s)
(\ (s ** p) => (p' : Position c s ** Not (p === p')))
export
hole : (v : Extension (Derivative c) x) -> Position c (fst (shape v))
hole (MkExtension (shp ** p) _) = p
export
unplug : (v : Extension c x) -> Position c (shape v) -> (Extension (Derivative c) x, x)
unplug (MkExtension shp chld) p = (MkExtension (shp ** p) (chld . fst), chld p)
export
plug : (v : Extension (Derivative c) x) -> DecEq (Position c (fst (shape v))) => x -> Extension c x
plug (MkExtension (shp ** p) chld) x = MkExtension shp $ \ p' => case decEq p p' of
Yes eq => x
No neq => chld (p' ** neq)
export
toConst : Extension (Const Void) x -> Extension (Derivative (Const k)) x
toConst v = absurd (fromConst v)
export
fromConst : Extension (Derivative (Const k)) x -> Extension (Const Void) x
fromConst v = absurd (hole {c = Const _} v)
export
toIdentity : Extension (Derivative Identity) x
toIdentity = MkExtension (() ** ()) (\ (() ** eq) => absurd (eq Refl))
export
toSum : Extension (Sum (Derivative c) (Derivative d)) x ->
Extension (Derivative (Sum c d)) x
toSum v = case fromSum {c = Derivative c} {d = Derivative d} v of
Left (MkExtension (shp ** p) chld) => MkExtension (Left shp ** p) chld
Right (MkExtension (shp ** p) chld) => MkExtension (Right shp ** p) chld
export
fromSum : Extension (Derivative (Sum c d)) x ->
Extension (Sum (Derivative c) (Derivative d)) x
fromSum (MkExtension (shp ** p) chld) = toSum {c = Derivative c} {d = Derivative d} $ case shp of
Left shp => Left (MkExtension (shp ** p) chld)
Right shp => Right (MkExtension (shp ** p) chld)
export
toPair : Extension (Sum (Pair (Derivative c) d) (Pair c (Derivative d))) x ->
Extension (Derivative (Pair c d)) x
toPair v = case fromSum {c = Pair (Derivative c) d} {d = Pair c (Derivative d)} v of
Left p => let (MkExtension (shp1 ** p1) chld1, MkExtension shp2 chld2) = fromPair {c = Derivative c} p in
MkExtension ((shp1, shp2) ** Left p1) $ \ (p' ** neq) => case p' of
Left p1' => chld1 (p1' ** (neq . cong Left))
Right p2' => chld2 p2'
Right p => let (MkExtension shp1 chld1, MkExtension (shp2 ** p2) chld2) = fromPair {c} {d = Derivative d} p in
MkExtension ((shp1, shp2) ** Right p2) $ \ (p' ** neq) => case p' of
Left p1' => chld1 p1'
Right p2' => chld2 (p2' ** (neq . cong Right))
export
fromPair : Extension (Derivative (Pair c d)) x ->
Extension (Sum (Pair (Derivative c) d) (Pair c (Derivative d))) x
fromPair (MkExtension ((shp1, shp2) ** p) chld) = case p of
Left p1 => toSum {c = Pair (Derivative c) d} {d = Pair c (Derivative d)}
(Left (MkExtension ((shp1 ** p1), shp2) $ either
(\ p1' => chld (Left (DPair.fst p1') ** DPair.snd p1' . leftInjective))
(\ p2 => chld (Right p2 ** absurd))))
Right p2 => toSum {c = Pair (Derivative c) d} {d = Pair c (Derivative d)}
(Right (MkExtension (shp1, (shp2 ** p2)) $ either
(\ p1 => chld (Left p1 ** absurd))
(\ p2' => chld (Right (DPair.fst p2') ** DPair.snd p2' . rightInjective))))
export
fromCompose : Extension (Derivative (Compose c d)) x ->
Extension (Pair (Derivative d) (Compose (Derivative c) d)) x
fromCompose (MkExtension (MkExtension shp1 shp2 ** (p1 ** p2)) chld)
= toPair (left, right) where
left : Extension (Derivative d) x
left = MkExtension (shp2 p1 ** p2)
$ \ (p2' ** neqp2) => chld ((p1 ** p2') ** neqp2 . mkDPairInjectiveSnd)
right : Extension (Compose (Derivative c) d) x
right = toCompose
$ MkExtension (shp1 ** p1)
$ \ (p1' ** neqp1) => MkExtension (shp2 p1')
$ \ p2' => chld ((p1' ** p2') ** (neqp1 . cong fst))
export
toCompose : ((s : _) -> DecEq (Position c s)) -> ((s : _) -> DecEq (Position d s)) ->
Extension (Pair (Derivative d) (Compose (Derivative c) d)) x ->
Extension (Derivative (Compose c d)) x
toCompose dec1 dec2 v with (fromPair {c = Derivative d} {d = Compose (Derivative c) d} v)
toCompose dec1 dec2 v | (MkExtension (shp2 ** p2) chld2, w) with (fromCompose w)
toCompose dec1 dec2 v
| (MkExtension (shp2 ** p2) chld2, w)
| (MkExtension (shp1 ** p1) chld1)
= MkExtension (MkExtension shp1 (\ p1' => shp2' p1' (decEq @{dec1 shp1} p1 p1')) **
(p1 ** (p2' (decEq @{dec1 shp1} p1 p1))))
$ \ ((p1' ** p2'') ** neq) => chld2' p1' p2'' neq
where
shp2' : (p1' : Position c shp1) -> Dec (p1 === p1') -> Shape d
shp2' p1' (Yes eq) = shp2
shp2' p1' (No neq) = shape (chld1 (p1' ** neq))
p2' : (eq : Dec (p1 === p1)) -> Position d (shp2' p1 eq)
p2' (Yes Refl) = p2
p2' (No neq) = absurd (neq Refl)
chld2' : (p1' : Position c shp1) ->
(p2'' : Position d (shp2' p1' (decEq @{dec1 shp1} p1 p1'))) ->
(neq : Not (MkDPair p1 (p2' (decEq @{dec1 shp1} p1 p1)) = MkDPair p1' p2'')) -> x
chld2' p1' p2'' neq with (decEq @{dec1 shp1} p1 p1')
chld2' p1' p2'' neq | No neq1 = payloads (chld1 (p1' ** neq1)) p2''
chld2' _ p2'' neq | Yes Refl with (decEq @{dec1 shp1} p1 p1)
chld2' _ p2'' neq | Yes Refl | No argh = absurd (argh Refl)
chld2' _ p2'' neq | Yes Refl | Yes Refl with (decEq @{dec2 shp2} p2 p2'')
chld2' _ p2'' neq | Yes Refl | Yes Refl | No neq2 = chld2 (p2'' ** neq2)
chld2' _ _ neq | Yes Refl | Yes Refl | Yes Refl = absurd (neq Refl)