mirror of
https://github.com/idris-lang/Idris2.git
synced 2025-01-02 08:35:07 +03:00
83 lines
3.1 KiB
Idris
83 lines
3.1 KiB
Idris
|
module Data.Primitives.Views
|
||
|
|
||
|
-- We need all the believe_mes and asserts throughout this file because we're
|
||
|
-- working with primitive here! We also have separate implementations per
|
||
|
-- primitive, rather than using interfaces, because we're only going to trust
|
||
|
-- the primitive implementations.
|
||
|
|
||
|
namespace IntegerV
|
||
|
||| View for expressing a number as a multiplication + a remainder
|
||
|
public export
|
||
|
data Divides : Integer -> (d : Integer) -> Type where
|
||
|
DivByZero : Divides x 0
|
||
|
DivBy : (div, rem : _) ->
|
||
|
(prf : rem >= 0 && rem < d = True) ->
|
||
|
Divides ((d * div) + rem) d
|
||
|
|
||
|
||| Covering function for the `Divides` view
|
||
|
public export
|
||
|
divides : (val : Integer) -> (d : Integer) -> Divides val d
|
||
|
divides val 0 = DivByZero
|
||
|
divides val d
|
||
|
= assert_total $
|
||
|
let dividend = if d < 0 then -(val `div` abs d)
|
||
|
else val `div` d
|
||
|
remainder = abs (val - dividend * d) in
|
||
|
believe_me (DivBy {d} dividend remainder
|
||
|
(believe_me (Refl {x = True})))
|
||
|
|
||
|
||| View for recursion over Integers
|
||
|
public export
|
||
|
data IntegerRec : Integer -> Type where
|
||
|
IntegerZ : IntegerRec 0
|
||
|
IntegerSucc : IntegerRec (n - 1) -> IntegerRec n
|
||
|
IntegerPred : IntegerRec ((-n) + 1) -> IntegerRec (-n)
|
||
|
|
||
|
||| Covering function for `IntegerRec`
|
||
|
public export
|
||
|
integerRec : (x : Integer) -> IntegerRec x
|
||
|
integerRec 0 = IntegerZ
|
||
|
integerRec x = if x > 0 then IntegerSucc (assert_total (integerRec (x - 1)))
|
||
|
else believe_me (IntegerPred {n = -x}
|
||
|
(assert_total (believe_me (integerRec (x + 1)))))
|
||
|
|
||
|
namespace IntV
|
||
|
||| View for expressing a number as a multiplication + a remainder
|
||
|
public export
|
||
|
data Divides : Int -> (d : Int) -> Type where
|
||
|
DivByZero : IntV.Divides x 0
|
||
|
DivBy : (div, rem : _) ->
|
||
|
(prf : rem >= 0 && rem < d = True) ->
|
||
|
IntV.Divides ((d * div) + rem) d
|
||
|
|
||
|
-- I have assumed, but not actually verified, that this will still
|
||
|
-- give a right result (i.e. still adding up) when the Ints overflow.
|
||
|
-- TODO: Someone please check this and fix if necessary...
|
||
|
|
||
|
||| Covering function for the `Divides` view
|
||
|
public export
|
||
|
divides : (val : Int) -> (d : Int) -> Divides val d
|
||
|
divides val 0 = DivByZero
|
||
|
divides val d
|
||
|
= assert_total $
|
||
|
let dividend = if d < 0 then -(val `div` abs d)
|
||
|
else val `div` d
|
||
|
remainder = abs (val - dividend * d) in
|
||
|
believe_me (DivBy {d} dividend remainder
|
||
|
(believe_me (Refl {x = True})))
|
||
|
|
||
|
||| View for recursion over Ints
|
||
|
public export
|
||
|
data IntRec : Int -> Type where
|
||
|
IntZ : IntRec 0
|
||
|
IntSucc : IntRec (n - 1) -> IntRec n
|
||
|
IntPred : IntRec ((-n) + 1) -> IntRec (-n)
|
||
|
|
||
|
||| Covering function for `IntRec`
|
||
|
public export
|
||
|
intRec : (x : Int) -> IntRec x
|
||
|
intRec 0 = IntZ
|
||
|
intRec x = if x > 0 then IntSucc (assert_total (intRec (x - 1)))
|
||
|
else believe_me (IntPred {n = -x}
|
||
|
(assert_total (believe_me (intRec (x + 1)))))
|