Idris2/libs/base/Data/Bool.idr

136 lines
3.6 KiB
Idris
Raw Normal View History

2020-06-12 00:14:11 +03:00
module Data.Bool
%default total
export
notInvolutive : (x : Bool) -> not (not x) = x
notInvolutive True = Refl
notInvolutive False = Refl
-- AND
export
andSameNeutral : (x : Bool) -> x && x = x
andSameNeutral False = Refl
andSameNeutral True = Refl
export
andFalseFalse : (x : Bool) -> x && False = False
andFalseFalse False = Refl
andFalseFalse True = Refl
export
andTrueNeutral : (x : Bool) -> x && True = x
andTrueNeutral False = Refl
andTrueNeutral True = Refl
export
andAssociative : (x, y, z : Bool) -> x && (y && z) = (x && y) && z
andAssociative True _ _ = Refl
andAssociative False _ _ = Refl
export
andCommutative : (x, y : Bool) -> x && y = y && x
andCommutative x True = andTrueNeutral x
andCommutative x False = andFalseFalse x
export
andNotFalse : (x : Bool) -> x && not x = False
andNotFalse False = Refl
andNotFalse True = Refl
-- OR
export
orSameNeutral : (x : Bool) -> x || x = x
orSameNeutral False = Refl
orSameNeutral True = Refl
export
orFalseNeutral : (x : Bool) -> x || False = x
orFalseNeutral False = Refl
orFalseNeutral True = Refl
export
orTrueTrue : (x : Bool) -> x || True = True
orTrueTrue False = Refl
orTrueTrue True = Refl
export
orAssociative : (x, y, z : Bool) -> x || (y || z) = (x || y) || z
orAssociative True _ _ = Refl
orAssociative False _ _ = Refl
export
orCommutative : (x, y : Bool) -> x || y = y || x
orCommutative x True = orTrueTrue x
orCommutative x False = orFalseNeutral x
export
orNotTrue : (x : Bool) -> x || not x = True
orNotTrue False = Refl
orNotTrue True = Refl
2023-06-30 17:16:19 +03:00
export
orBothFalse : {0 x, y : Bool} -> (0 prf : x || y = False) -> (x = False, y = False)
orBothFalse prf = unerase $ orBothFalse' prf
where
unerase : (0 prf : (x = False, y = False)) -> (x = False, y = False)
unerase (p, q) = (irrelevantEq p, irrelevantEq q)
orBothFalse' : {x, y : Bool} -> x || y = False -> (x = False, y = False)
orBothFalse' {x = False} yFalse = (Refl, yFalse)
orBothFalse' {x = True} trueFalse = absurd trueFalse
2020-06-12 00:14:11 +03:00
-- interaction & De Morgan's laws
export
orSameAndRightNeutral : (x, y : Bool) -> x || (x && y) = x
orSameAndRightNeutral False _ = Refl
orSameAndRightNeutral True _ = Refl
export
andDistribOrR : (x, y, z : Bool) -> x && (y || z) = (x && y) || (x && z)
andDistribOrR False _ _ = Refl
andDistribOrR True _ _ = Refl
export
orDistribAndR : (x, y, z : Bool) -> x || (y && z) = (x || y) && (x || z)
orDistribAndR False _ _ = Refl
orDistribAndR True _ _ = Refl
export
notAndIsOr : (x, y : Bool) -> not (x && y) = not x || not y
notAndIsOr False _ = Refl
notAndIsOr True _ = Refl
export
notOrIsAnd : (x, y : Bool) -> not (x || y) = not x && not y
notOrIsAnd False _ = Refl
notOrIsAnd True _ = Refl
-- Interaction with typelevel `Not`
export
notTrueIsFalse : {1 x : Bool} -> Not (x = True) -> x = False
notTrueIsFalse {x=False} _ = Refl
notTrueIsFalse {x=True} f = absurd $ f Refl
export
notFalseIsTrue : {1 x : Bool} -> Not (x = False) -> x = True
notFalseIsTrue {x=True} _ = Refl
notFalseIsTrue {x=False} f = absurd $ f Refl
--------------------------------------------------------------------------------
-- Decidability specialized on bool
--------------------------------------------------------------------------------
||| You can reverse decidability when bool is involved.
2021-07-13 17:32:01 +03:00
-- Given a contra on bool equality Not (a = b), produce a proof of the opposite (that (not a) = b)
public export
2021-07-13 17:32:01 +03:00
invertContraBool : (a, b : Bool) -> Not (a = b) -> (not a = b)
invertContraBool False False contra = absurd $ contra Refl
invertContraBool False True contra = Refl
invertContraBool True False contra = Refl
invertContraBool True True contra = absurd $ contra Refl