Idris2/samples/proofs/pluscomm.idr

18 lines
518 B
Idris
Raw Normal View History

plus_commutes_Z : (m : Nat) -> m = plus m Z
plus_commutes_Z Z = Refl
plus_commutes_Z (S k)
= let rec = plus_commutes_Z k in
rewrite sym rec in Refl
plus_commutes_S : (k : Nat) -> (m : Nat) -> S (plus m k) = plus m (S k)
plus_commutes_S k Z = Refl
plus_commutes_S k (S j)
= rewrite plus_commutes_S k j in Refl
total
plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_commutes Z m = plus_commutes_Z m
plus_commutes (S k) m
= rewrite plus_commutes k m in
plus_commutes_S k m