Idris2/libs/base/Control/Relation.idr

135 lines
3.9 KiB
Idris
Raw Normal View History

||| A binary relation is a function of type (ty -> ty -> Type).
|||
||| A prominent example of a binary relation is LTE over Nat.
|||
||| This module defines some interfaces for describing properties of
||| binary relations. It also proves somes relations among relations.
module Control.Relation
%default total
||| A relation on ty is a type indexed by two ty values
public export
Rel : Type -> Type
Rel ty = ty -> ty -> Type
||| A relation is reflexive if x ~ x for every x.
public export
interface Reflexive ty rel | rel where
constructor MkReflexive
reflexive : {x : ty} -> rel x x
||| A relation is transitive if x ~ z when x ~ y and y ~ z.
public export
interface Transitive ty rel | rel where
constructor MkTransitive
transitive : {x, y, z : ty} -> rel x y -> rel y z -> rel x z
||| A relation is symmetric if y ~ x when x ~ y.
public export
interface Symmetric ty rel | rel where
constructor MkSymmetric
symmetric : {x, y : ty} -> rel x y -> rel y x
||| A relation is antisymmetric if no two distinct elements bear the relation to each other.
public export
interface Antisymmetric ty rel | rel where
constructor MkAntisymmetric
antisymmetric : {x, y : ty} -> rel x y -> rel y x -> x = y
||| A relation is dense if when x ~ y there is z such that x ~ z and z ~ y.
public export
interface Dense ty rel | rel where
constructor MkDense
dense : {x, y : ty} -> rel x y -> (z : ty ** (rel x z, rel z y))
||| A relation is serial if for all x there is a y such that x ~ y.
public export
interface Serial ty rel | rel where
constructor MkSerial
serial : {x : ty} -> (y : ty ** rel x y)
||| A relation is euclidean if y ~ z when x ~ y and x ~ z.
public export
interface Euclidean ty rel | rel where
constructor MkEuclidean
euclidean : {x, y, z : ty} -> rel x y -> rel x z -> rel y z
||| A tolerance relation is reflexive and symmetric.
public export
interface (Reflexive ty rel, Symmetric ty rel) => Tolerance ty rel | rel where
||| A partial equivalence is transitive and symmetric.
public export
interface (Transitive ty rel, Symmetric ty rel) => PartialEquivalence ty rel | rel where
||| An equivalence relation is transitive, symmetric, and reflexive.
public export
interface (Reflexive ty rel, Transitive ty rel, Symmetric ty rel) => Equivalence ty rel | rel where
----------------------------------------
||| Every reflexive relation is dense.
public export
Reflexive ty rel => Dense ty rel where
dense {x} xy = (x ** (reflexive {x}, xy))
||| Every reflexive relation is serial.
public export
Reflexive ty rel => Serial ty rel where
serial {x} = (x ** reflexive {x})
||| A transitive symmetric serial relation is reflexive.
public export
(Transitive ty rel, Symmetric ty rel, Serial ty rel) => Reflexive ty rel where
reflexive {x} =
let (y ** xy) = serial {x} in
transitive {x} xy $ symmetric {x} xy
||| A reflexive euclidean relation is symmetric.
public export
[RES] (Reflexive ty rel, Euclidean ty rel) => Symmetric ty rel where
symmetric {x} xy =
euclidean {x} xy $ reflexive {x}
||| A reflexive euclidean relation is transitive.
public export
[RET] (Reflexive ty rel, Euclidean ty rel) =>
Transitive ty rel using RES where
transitive {rel} xy yz =
symmetric {rel} $ euclidean {rel} yz $ symmetric {rel} xy
||| A transitive symmetrics relation is euclidean.
public export
[TSE] (Transitive ty rel, Symmetric ty rel) => Euclidean ty rel where
euclidean {rel} xy xz =
transitive {rel} (symmetric {rel} xy) xz
----------------------------------------
public export
Reflexive ty Equal where
reflexive = Refl
public export
Symmetric ty Equal where
symmetric xy = sym xy
public export
Transitive ty Equal where
transitive xy yz = trans xy yz
public export
Euclidean ty Equal where
euclidean = euclidean {rel = Equal} @{TSE}
public export
Tolerance ty Equal where
public export
PartialEquivalence ty Equal where
public export
Equivalence ty Equal where