Idris2/libs/contrib/Data/Nat/Factor.idr

496 lines
20 KiB
Idris
Raw Normal View History

module Data.Nat.Factor
import Control.WellFounded
import Data.Fin
import Data.Fin.Extra
import Data.Nat
import Data.Nat.Equational
%default total
||| Factor n p is a witness that p is indeed a factor of n,
||| i.e. there exists a q such that p * q = n.
public export
data Factor : Nat -> Nat -> Type where
CofactorExists : {p, n : Nat} -> (q : Nat) -> n = p * q -> Factor p n
||| NotFactor n p is a witness that p is NOT a factor of n,
||| i.e. there exist a q and an r, greater than 0 but smaller than p,
||| such that p * q + r = n.
public export
data NotFactor : Nat -> Nat -> Type where
ZeroNotFactorS : (n : Nat) -> NotFactor Z (S n)
ProperRemExists : {p, n : Nat} -> (q : Nat) ->
(r : Fin (pred p)) ->
n = p * q + S (finToNat r) ->
NotFactor p n
||| DecFactor n p is a result of the process which decides
||| whether or not p is a factor on n.
public export
data DecFactor : Nat -> Nat -> Type where
ItIsFactor : Factor p n -> DecFactor p n
ItIsNotFactor : NotFactor p n -> DecFactor p n
||| CommonFactor n m p is a witness that p is a factor of both n and m.
public export
data CommonFactor : Nat -> Nat -> Nat -> Type where
CommonFactorExists : {a, b : Nat} -> (p : Nat) -> Factor p a -> Factor p b -> CommonFactor p a b
||| GCD n m p is a witness that p is THE greatest common factor of both n and m.
||| The second argument to the constructor is a function which for all q being
||| a factor of both n and m, proves that q is a factor of p.
|||
||| This is equivalent to a more straightforward definition, stating that for
||| all q being a factor of both n and m, q is less than or equal to p, but more
||| powerful and therefore more useful for further proofs. See below for a proof
||| that if q is a factor of p then q must be less than or equal to p.
public export
data GCD : Nat -> Nat -> Nat -> Type where
MkGCD : {a, b, p : Nat} ->
{auto notBothZero : NotBothZero a b} ->
(CommonFactor p a b) ->
((q : Nat) -> CommonFactor q a b -> Factor q p) ->
GCD p a b
Uninhabited (Factor Z (S n)) where
uninhabited (CofactorExists q prf) = uninhabited prf
||| Given a statement that p is factor of n, return its cofactor.
export
cofactor : Factor p n -> (q : Nat ** Factor q n)
cofactor (CofactorExists q prf) =
(q ** CofactorExists p $ rewrite multCommutative q p in prf)
||| 1 is a factor of any natural number.
export
oneIsFactor : (n : Nat) -> Factor 1 n
oneIsFactor Z = CofactorExists Z Refl
oneIsFactor (S k) = CofactorExists (S k) (rewrite plusZeroRightNeutral k in Refl)
||| 1 is the only factor of itself
export
oneSoleFactorOfOne : (a : Nat) -> Factor a 1 -> a = 1
oneSoleFactorOfOne 0 (CofactorExists _ prf) = sym prf
oneSoleFactorOfOne 1 _ = Refl
oneSoleFactorOfOne (S (S k)) (CofactorExists Z prf) =
absurd . uninhabited $ trans prf $ multCommutative k 0
oneSoleFactorOfOne (S (S k)) (CofactorExists (S j) prf) =
absurd . uninhabited $
trans
(succInjective 0 (j + S (j + (k * S j))) prf)
(plusCommutative j (S (j + (k * S j))))
||| Every natural number is factor of itself.
export
Reflexive Nat Factor where
reflexive = CofactorExists 1 $ rewrite multOneRightNeutral x in Refl
||| Factor relation is transitive. If b is factor of a and c is b factor of c
||| is also a factor of a.
export
Transitive Nat Factor where
transitive (CofactorExists qb prfAB) (CofactorExists qc prfBC) =
CofactorExists (qb * qc) $
rewrite prfBC in
rewrite prfAB in
rewrite multAssociative x qb qc in
Refl
export
Preorder Nat Factor where
multOneSoleNeutral : (a, b : Nat) -> S a = S a * b -> b = 1
multOneSoleNeutral Z b prf =
rewrite sym $ plusZeroRightNeutral b in
sym prf
multOneSoleNeutral (S k) Z prf =
absurd . uninhabited $ trans prf $ multCommutative k 0
multOneSoleNeutral (S k) (S Z) prf = Refl
multOneSoleNeutral (S k) (S (S j)) prf =
absurd . uninhabited .
subtractEqLeft k {c = S j + S (j + (k * S j))} $
rewrite plusSuccRightSucc j (S (j + (k * S j))) in
rewrite plusZeroRightNeutral k in
rewrite plusAssociative k j (S (S (j + (k * S j)))) in
rewrite sym $ plusCommutative j k in
rewrite sym $ plusAssociative j k (S (S (j + (k * S j)))) in
rewrite sym $ plusSuccRightSucc k (S (j + (k * S j))) in
rewrite sym $ plusSuccRightSucc k (j + (k * S j)) in
rewrite plusAssociative k j (k * S j) in
rewrite plusCommutative k j in
rewrite sym $ plusAssociative j k (k * S j) in
rewrite sym $ multRightSuccPlus k (S j) in
succInjective k (j + (S (S (j + (k * (S (S j))))))) $
succInjective (S k) (S (j + (S (S (j + (k * (S (S j)))))))) prf
||| If a is a factor of b and b is a factor of a, then a = b.
public export
Antisymmetric Nat Factor where
antisymmetric {x = Z} (CofactorExists _ prfAB) _ = sym prfAB
antisymmetric {y = Z} _ (CofactorExists _ prfBA) = prfBA
antisymmetric {x = S a} {y = S _} (CofactorExists qa prfAB) (CofactorExists qb prfBA) =
let qIs1 = multOneSoleNeutral a (qa * qb) $
rewrite multAssociative (S a) qa qb in
rewrite sym prfAB in
prfBA
in
rewrite prfAB in
rewrite oneSoleFactorOfOne qa . CofactorExists qb $ sym qIs1 in
rewrite multOneRightNeutral a in
Refl
PartialOrder Nat Factor where
||| No number can simultaneously be and not be a factor of another number.
export
factorNotFactorAbsurd : Factor p n -> Not (NotFactor p n)
factorNotFactorAbsurd (CofactorExists _ prf) (ZeroNotFactorS _) =
uninhabited prf
factorNotFactorAbsurd (CofactorExists q prf) (ProperRemExists q' r contra) with (cmp q q')
factorNotFactorAbsurd (CofactorExists q prf) (ProperRemExists (q + S d) r contra) | CmpLT d =
SIsNotZ .
subtractEqLeft (p * q) {b = S ((p * S d) + finToNat r)} $
rewrite plusZeroRightNeutral (p * q) in
rewrite plusSuccRightSucc (p * S d) (finToNat r) in
rewrite plusAssociative (p * q) (p * S d) (S (finToNat r)) in
rewrite sym $ multDistributesOverPlusRight p q (S d) in
rewrite sym contra in
rewrite sym prf in
Refl
factorNotFactorAbsurd (CofactorExists q prf) (ProperRemExists q r contra) | CmpEQ =
SIsNotZ $ sym $
plusLeftCancel (p * q) 0 (S (finToNat r)) $
trans (plusZeroRightNeutral (p * q)) $
trans (sym prf) contra
factorNotFactorAbsurd (CofactorExists (q + S d) prf) (ProperRemExists q r contra) | CmpGT d =
let srEQpPlusPD = the (p + (p * d) = S (finToNat r)) $
rewrite sym $ multRightSuccPlus p d in
subtractEqLeft (p * q) $
rewrite sym $ multDistributesOverPlusRight p q (S d) in
rewrite sym contra in
sym prf
in
case p of
Z => uninhabited srEQpPlusPD
(S k) =>
succNotLTEzero .
subtractLteLeft k {b = S (d + (k * d))} $
rewrite sym $ plusSuccRightSucc k (d + (k * d)) in
rewrite plusZeroRightNeutral k in
rewrite srEQpPlusPD in
elemSmallerThanBound r
||| Anything is a factor of 0.
export
anythingFactorZero : (a : Nat) -> Factor a 0
anythingFactorZero a = CofactorExists 0 (sym $ multZeroRightZero a)
||| For all natural numbers p and q, p is a factor of (p * q).
export
multFactor : (p, q : Nat) -> Factor p (p * q)
multFactor p q = CofactorExists q Refl
||| If n > 0 then any factor of n must be less than or equal to n.
export
factorLteNumber : Factor p n -> {auto positN : LTE 1 n} -> LTE p n
factorLteNumber (CofactorExists Z prf) =
let nIsZero = trans prf $ multCommutative p 0
oneLteZero = replace {p = LTE 1} nIsZero positN
in
absurd $ succNotLTEzero oneLteZero
factorLteNumber (CofactorExists (S k) prf) =
rewrite prf in
leftFactorLteProduct p k
||| If p is a factor of n, then it is also a factor of (n + p).
export
plusDivisorAlsoFactor : Factor p n -> Factor p (n + p)
plusDivisorAlsoFactor (CofactorExists q prf) =
CofactorExists (S q) $
rewrite plusCommutative n p in
rewrite multRightSuccPlus p q in
cong (plus p) prf
||| If p is NOT a factor of n, then it also is NOT a factor of (n + p).
export
plusDivisorNeitherFactor : NotFactor p n -> NotFactor p (n + p)
plusDivisorNeitherFactor (ZeroNotFactorS k) =
rewrite plusZeroRightNeutral k in
ZeroNotFactorS k
plusDivisorNeitherFactor (ProperRemExists q r remPrf) =
ProperRemExists (S q) r $
rewrite multRightSuccPlus p q in
rewrite sym $ plusAssociative p (p * q) (S $ finToNat r) in
rewrite plusCommutative p ((p * q) + S (finToNat r)) in
rewrite remPrf in
Refl
||| If p is a factor of n, then it is also a factor of any multiply of n.
export
multNAlsoFactor : Factor p n -> (a : Nat) -> {auto aok : LTE 1 a} -> Factor p (n * a)
multNAlsoFactor _ Z = absurd $ succNotLTEzero aok
multNAlsoFactor (CofactorExists q prf) (S a) =
CofactorExists (q * S a) $
rewrite prf in
sym $ multAssociative p q (S a)
||| If p is a factor of both n and m, then it is also a factor of their sum.
export
plusFactor : Factor p n -> Factor p m -> Factor p (n + m)
plusFactor (CofactorExists qn prfN) (CofactorExists qm prfM) =
rewrite prfN in
rewrite prfM in
rewrite sym $ multDistributesOverPlusRight p qn qm in
multFactor p (qn + qm)
||| If p is a factor of a sum (n + m) and a factor of n, then it is also
||| a factor of m. This could be expressed more naturally with minus, but
||| it would be more difficult to prove, since minus lacks certain properties
||| that one would expect from decent subtraction.
export
minusFactor : {b : Nat} -> Factor p (a + b) -> Factor p a -> Factor p b
minusFactor (CofactorExists qab prfAB) (CofactorExists qa prfA) =
CofactorExists (minus qab qa) $
rewrite multDistributesOverMinusRight p qab qa in
rewrite sym prfA in
rewrite sym prfAB in
replace {p = \x => b = minus (a + b) x} (plusZeroRightNeutral a) $
rewrite plusMinusLeftCancel a b 0 in
rewrite minusZeroRight b in
Refl
||| A decision procedure for whether of not p is a factor of n.
export
decFactor : (n, d : Nat) -> DecFactor d n
decFactor Z Z = ItIsFactor $ reflexive {x = Z}
decFactor (S k) Z = ItIsNotFactor $ ZeroNotFactorS k
decFactor n (S d) =
let Fraction n (S d) q r prf = Data.Fin.Extra.divMod n (S d) in
case r of
FZ =>
ItIsFactor $ CofactorExists q $
rewrite sym prf in
rewrite plusCommutative (q * (S d)) 0 in
multCommutative q (S d)
(FS pr) =>
ItIsNotFactor $ ProperRemExists q pr (
rewrite multCommutative d q in
rewrite sym $ multRightSuccPlus q d in
sym prf
)
||| For all p greater than 1, if p is a factor of n, then it is NOT a factor
||| of (n + 1).
export
factNotSuccFact : {p : Nat} -> GT p 1 -> Factor p n -> NotFactor p (S n)
factNotSuccFact {p = Z} pGt1 (CofactorExists q prf) =
absurd $ succNotLTEzero pGt1
factNotSuccFact {p = S Z} pGt1 (CofactorExists q prf) =
absurd . succNotLTEzero $ fromLteSucc pGt1
factNotSuccFact {p = S (S k)} pGt1 (CofactorExists q prf) =
ProperRemExists q FZ (
rewrite sym prf in
rewrite plusCommutative n 1 in
Refl
)
using (p : Nat)
||| The relation of common factor is symmetric, that is if p is a
||| common factor of n and m, then it is also a common factor of
||| m and n.
public export
Symmetric Nat (CommonFactor p) where
symmetric (CommonFactorExists p pfx pfy) = CommonFactorExists p pfy pfx
||| The relation of greatest common divisor is symmetric.
public export
Symmetric Nat (GCD p) where
symmetric {x = Z} {y = Z} (MkGCD _ _) impossible
symmetric {x = S _} (MkGCD cf greatest) =
MkGCD (symmetric {ty = Nat} cf) $
\q, cf => greatest q (symmetric {ty = Nat} cf)
symmetric {y = S _} (MkGCD cf greatest) =
MkGCD (symmetric {ty = Nat} cf) $
\q, cf => greatest q (symmetric {ty = Nat} cf)
||| If p is a common factor of a and b, then it is also a factor of their GCD.
||| This actually follows directly from the definition of GCD.
export
commonFactorAlsoFactorOfGCD : {p : Nat} -> Factor p a -> Factor p b -> GCD q a b -> Factor p q
commonFactorAlsoFactorOfGCD pfa pfb (MkGCD _ greatest) =
greatest p (CommonFactorExists p pfa pfb)
||| 1 is a common factor of any pair of natural numbers.
export
oneCommonFactor : (a, b : Nat) -> CommonFactor 1 a b
oneCommonFactor a b = CommonFactorExists 1
(CofactorExists a (rewrite plusZeroRightNeutral a in Refl))
(CofactorExists b (rewrite plusZeroRightNeutral b in Refl))
||| Any natural number is a common factor of itself and itself.
export
selfIsCommonFactor : (a : Nat) -> {auto ok : LTE 1 a} -> CommonFactor a a a
selfIsCommonFactor a =
let prf = reflexive {x = a} in
CommonFactorExists a prf prf
-- Some helpers for the gcd function.
data Search : Type where
SearchArgs : (a, b : Nat) -> LTE b a -> {auto bNonZero : LTE 1 b} -> Search
left : Search -> Nat
left (SearchArgs l _ _) = l
right : Search -> Nat
right (SearchArgs _ r _) = r
Sized Search where
size (SearchArgs a b _) = a + b
2021-07-13 17:32:01 +03:00
notLteAndGt : (a, b : Nat) -> LTE a b -> Not (GT a b)
notLteAndGt Z _ _ aGtB = succNotLTEzero aGtB
notLteAndGt (S _) Z aLteB _ = succNotLTEzero aLteB
notLteAndGt (S k) (S j) aLteB aGtB = notLteAndGt k j (fromLteSucc aLteB) (fromLteSucc aGtB)
gcd_step : (x : Search) ->
(rec : (y : Search) -> Smaller y x ->
(f : Nat ** GCD f (left y) (right y))) ->
(f : Nat ** GCD f (left x) (right x))
gcd_step (SearchArgs Z _ bLteA {bNonZero}) _ = absurd . succNotLTEzero $ transitive {ty = Nat} bNonZero bLteA
gcd_step (SearchArgs _ Z _ {bNonZero}) _ = absurd $ succNotLTEzero bNonZero
gcd_step (SearchArgs (S a) (S b) bLteA) rec =
case divMod (S a) (S b) of
Fraction (S a) (S b) q FZ prf =>
let sbIsFactor =
rewrite multCommutative b q in
rewrite sym $ multRightSuccPlus q b in
replace {p = \x => S a = x} (plusZeroRightNeutral (q * S b)) $ sym prf
skDividesA = CofactorExists q sbIsFactor
skDividesB = reflexive {x = S b}
in
(S b ** MkGCD (CommonFactorExists (S b) skDividesA skDividesB)
(\q', (CommonFactorExists q' _ qfb) => qfb))
Fraction (S a) (S b) q (FS r) prf =>
let rLtSb = lteSuccRight $ elemSmallerThanBound r
_ = the (LTE 1 q) $ case q of
Z => absurd . notLteAndGt (S $ finToNat r) b (elemSmallerThanBound r) $
replace {p = LTE (S b)} (sym prf) bLteA
(S k) => LTESucc LTEZero
(f ** MkGCD (CommonFactorExists f prfSb prfRem) greatestSbSr) =
rec (SearchArgs (S b) (S $ finToNat r) rLtSb) $
rewrite plusCommutative a (S b) in
LTESucc . LTESucc . plusLteLeft b . fromLteSucc $
transitive {rel = LTE} (elemSmallerThanBound $ FS r) bLteA
prfSa =
rewrite sym prf in
rewrite multCommutative q (S b) in
plusFactor (multNAlsoFactor prfSb q) prfRem
greatest = the
((q' : Nat) -> CommonFactor q' (S a) (S b) -> Factor q' f)
(\q', (CommonFactorExists q' qfa qfb) =>
let sbfqSb =
rewrite multCommutative q (S b) in
multFactor (S b) q
rightPrf = minusFactor {a = q * S b}
(rewrite prf in qfa)
(transitive {ty = Nat} qfb sbfqSb)
in
greatestSbSr q' (CommonFactorExists q' qfb rightPrf)
)
in
(f ** MkGCD (CommonFactorExists f prfSa prfSb) greatest)
||| An implementation of Euclidean Algorithm for computing greatest common
||| divisors. It is proven correct and total; returns a proof that computed
||| number actually IS the GCD. Unfortunately it's very slow, so improvements
||| in terms of efficiency would be welcome.
export
gcd : (a, b : Nat) -> {auto ok : NotBothZero a b} -> (f : Nat ** GCD f a b)
gcd Z Z impossible
gcd Z b =
(b ** MkGCD (CommonFactorExists b (anythingFactorZero b) (reflexive {x = b})) $
\q, (CommonFactorExists q _ prf) => prf
)
gcd a Z =
(a ** MkGCD (CommonFactorExists a (reflexive {x = a}) (anythingFactorZero a)) $
\q, (CommonFactorExists q prf _) => prf
)
gcd (S a) (S b) with (cmp (S a) (S b))
gcd (S (b + S d)) (S b) | CmpGT d =
sizeInd gcd_step $
SearchArgs (S (b + S d)) (S b) $
rewrite sym $ plusSuccRightSucc b d in
LTESucc . lteSuccRight $ lteAddRight b
gcd (S a) (S a) | CmpEQ =
(S a ** MkGCD (selfIsCommonFactor (S a))
(\q, (CommonFactorExists q qfa _) => qfa))
gcd (S a) (S (a + S d)) | CmpLT d =
let (f ** MkGCD prf greatest) =
sizeInd gcd_step $
SearchArgs (S (a + S d)) (S a) $
rewrite sym $ plusSuccRightSucc a d in
LTESucc . lteSuccRight $ lteAddRight a
in
(f ** MkGCD (symmetric {ty = Nat} prf)
(\q, cf => greatest q $ symmetric {ty = Nat} cf))
||| For every two natural numbers there is a unique greatest common divisor.
export
gcdUnique : GCD p a b -> GCD q a b -> p = q
gcdUnique (MkGCD pCFab greatestP) (MkGCD qCFab greatestQ) =
antisymmetric (greatestQ p pCFab) (greatestP q qCFab)
divByGcdHelper : (a, b, c : Nat) -> GCD (S a) (S a * S b) (S a * c) -> GCD 1 (S b) c
divByGcdHelper a b c (MkGCD _ greatest) =
MkGCD (CommonFactorExists 1 (oneIsFactor (S b)) (oneIsFactor c)) $
\q, (CommonFactorExists q (CofactorExists qb prfQB) (CofactorExists qc prfQC)) =>
let qFab = CofactorExists qb $
rewrite multCommutative q (S a) in
rewrite sym $ multAssociative (S a) q qb in
rewrite sym $ prfQB in
Refl
qFac = CofactorExists qc $
rewrite multCommutative q (S a) in
rewrite sym $ multAssociative (S a) q qc in
rewrite sym $ prfQC in
Refl
CofactorExists f prfQAfA =
greatest (q * S a) (CommonFactorExists (q * S a) qFab qFac)
qf1 = multOneSoleNeutral a (f * q) $
rewrite multCommutative f q in
rewrite multAssociative (S a) q f in
rewrite sym $ multCommutative q (S a) in
prfQAfA
in
CofactorExists f $
rewrite multCommutative q f in
sym qf1
||| For every two natural numbers, if we divide both of them by their GCD,
||| the GCD of resulting numbers will always be 1.
export
divByGcdGcdOne : {a, b, c : Nat} -> GCD a (a * b) (a * c) -> GCD 1 b c
divByGcdGcdOne {a = Z} (MkGCD _ _) impossible
divByGcdGcdOne {a = S a} {b = Z} {c = Z} (MkGCD {notBothZero} _ _) =
case replace {p = \x => NotBothZero x x} (multZeroRightZero (S a)) notBothZero of
LeftIsNotZero impossible
RightIsNotZero impossible
divByGcdGcdOne {a = S a} {b = Z} {c = S c} gcdPrf@(MkGCD {notBothZero} _ _) =
case replace {p = \x => NotBothZero x (S a * S c)} (multZeroRightZero (S a)) notBothZero of
LeftIsNotZero impossible
RightIsNotZero => symmetric {ty = Nat} $ divByGcdHelper a c Z $ symmetric {ty = Nat} gcdPrf
divByGcdGcdOne {a = S a} {b = S b} {c = Z} gcdPrf@(MkGCD {notBothZero} _ _) =
case replace {p = \x => NotBothZero (S a * S b) x} (multZeroRightZero (S a)) notBothZero of
RightIsNotZero impossible
LeftIsNotZero => divByGcdHelper a b Z gcdPrf
divByGcdGcdOne {a = S a} {b = S b} {c = S c} gcdPrf =
divByGcdHelper a b (S c) gcdPrf