mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-12-18 00:31:57 +03:00
360 lines
13 KiB
Idris
360 lines
13 KiB
Idris
|
------------------------------------------------------------------------
|
||
|
-- This module is based on the following papers:
|
||
|
|
||
|
-- Categories of Containers
|
||
|
-- Abbott, Altenkirch, Ghani
|
||
|
|
||
|
-- Derivatives of Containers
|
||
|
-- Abbott, Altenkirch, Ghani, McBride
|
||
|
------------------------------------------------------------------------
|
||
|
|
||
|
module Data.Container
|
||
|
|
||
|
import Data.Either
|
||
|
import Decidable.Equality
|
||
|
|
||
|
%default total
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
-- Container and their morphisms
|
||
|
-- * Extension is a functor from Container to Type
|
||
|
|
||
|
-- Objects of the category of containers
|
||
|
namespace Container
|
||
|
|
||
|
public export
|
||
|
record Container where
|
||
|
constructor MkContainer
|
||
|
Shape : Type
|
||
|
Position : Shape -> Type
|
||
|
|
||
|
public export
|
||
|
record Extension (c : Container) (x : Type) where
|
||
|
constructor MkExtension
|
||
|
shape : Shape c
|
||
|
payloads : Position c shape -> x
|
||
|
|
||
|
||| The image of a container by @Extension@ is a functor
|
||
|
public export
|
||
|
Functor (Extension c) where map f (MkExtension s p) = MkExtension s (f . p)
|
||
|
|
||
|
-- Morphisms of the category of containers
|
||
|
namespace Morphism
|
||
|
|
||
|
public export
|
||
|
record Morphism (c, d : Container) where
|
||
|
constructor MkMorphism
|
||
|
shapeMorphism : Shape c -> Shape d
|
||
|
positionMorphism : {s : Shape c} -> Position d (shapeMorphism s) -> Position c s
|
||
|
|
||
|
public export
|
||
|
Extension : Morphism c d -> Extension c x -> Extension d x
|
||
|
Extension phi (MkExtension s p)
|
||
|
= MkExtension (shapeMorphism phi s) (p . positionMorphism phi)
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
-- Combinators to build containers
|
||
|
|
||
|
namespace Combinators
|
||
|
|
||
|
-- Constant
|
||
|
public export
|
||
|
Const : Type -> Container
|
||
|
Const k = MkContainer k (const Void)
|
||
|
|
||
|
export
|
||
|
toConst : k -> Extension (Const k) x
|
||
|
toConst v = MkExtension v absurd
|
||
|
|
||
|
export
|
||
|
fromConst : Extension (Const k) x -> k
|
||
|
fromConst (MkExtension v _) = v
|
||
|
|
||
|
-- Identity
|
||
|
public export
|
||
|
Identity : Container
|
||
|
Identity = MkContainer () (\ () => ())
|
||
|
|
||
|
export
|
||
|
toIdentity : x -> Extension Identity x
|
||
|
toIdentity v = MkExtension () (const v)
|
||
|
|
||
|
export
|
||
|
fromIdentity : Extension Identity x -> x
|
||
|
fromIdentity (MkExtension () chld) = chld ()
|
||
|
|
||
|
-- Composition
|
||
|
public export
|
||
|
Compose : (d, c : Container) -> Container
|
||
|
Compose d c = MkContainer
|
||
|
(Extension d (Shape c))
|
||
|
(\ (MkExtension shp chld) => (p : Position d shp ** Position c (chld p)))
|
||
|
|
||
|
export
|
||
|
toCompose : (Extension d . Extension c) x -> Extension (Compose d c) x
|
||
|
toCompose (MkExtension shp1 chld)
|
||
|
= MkExtension (MkExtension shp1 (shape . chld)) (\ (p ** q) => payloads (chld p) q)
|
||
|
|
||
|
export
|
||
|
fromCompose : Extension (Compose d c) x -> (Extension d . Extension c) x
|
||
|
fromCompose (MkExtension (MkExtension shp1 shp2) chld)
|
||
|
= MkExtension shp1 (\ p => MkExtension (shp2 p) (\ q => chld (p ** q)))
|
||
|
|
||
|
-- Direct sum
|
||
|
public export
|
||
|
Sum : (c, d : Container) -> Container
|
||
|
Sum c d = MkContainer (Either (Shape c) (Shape d)) (either (Position c) (Position d))
|
||
|
|
||
|
export
|
||
|
toSum : Either (Extension c x) (Extension d x) -> Extension (Sum c d) x
|
||
|
toSum (Left (MkExtension shp chld)) = MkExtension (Left shp) chld
|
||
|
toSum (Right (MkExtension shp chld)) = MkExtension (Right shp) chld
|
||
|
|
||
|
export
|
||
|
fromSum : Extension (Sum c d) x -> Either (Extension c x) (Extension d x)
|
||
|
fromSum (MkExtension (Left shp) chld) = Left (MkExtension shp chld)
|
||
|
fromSum (MkExtension (Right shp) chld) = Right (MkExtension shp chld)
|
||
|
|
||
|
-- Pairing
|
||
|
public export
|
||
|
Pair : (c, d : Container) -> Container
|
||
|
Pair c d = MkContainer (Shape c, Shape d) (\ (p, q) => Either (Position c p) (Position d q))
|
||
|
|
||
|
export
|
||
|
toPair : (Extension c x, Extension d x) -> Extension (Pair c d) x
|
||
|
toPair (MkExtension shp1 chld1, MkExtension shp2 chld2)
|
||
|
= MkExtension (shp1, shp2) (either chld1 chld2)
|
||
|
|
||
|
export
|
||
|
fromPair : Extension (Pair c d) x -> (Extension c x, Extension d x)
|
||
|
fromPair (MkExtension (shp1, shp2) chld)
|
||
|
= (MkExtension shp1 (chld . Left), MkExtension shp2 (chld . Right))
|
||
|
|
||
|
-- Branching over a Type
|
||
|
public export
|
||
|
Exponential : Type -> Container -> Container
|
||
|
Exponential k c = MkContainer (k -> Shape c) (\ p => (v : k ** Position c (p v)))
|
||
|
|
||
|
export
|
||
|
toExponential : (k -> Extension c x) -> Extension (Exponential k c) x
|
||
|
toExponential f = MkExtension (shape . f) (\ (v ** p) => payloads (f v) p)
|
||
|
|
||
|
export
|
||
|
fromExponential : Extension (Exponential k c) x -> (k -> Extension c x)
|
||
|
fromExponential (MkExtension shp chld) k = MkExtension (shp k) (\ p => chld (k ** p))
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
-- Taking various fixpoints of containers
|
||
|
|
||
|
namespace Initial
|
||
|
|
||
|
public export
|
||
|
data W : Container -> Type where
|
||
|
MkW : Extension c (W c) -> W c
|
||
|
|
||
|
export
|
||
|
map : Morphism c d -> W c -> W d
|
||
|
map f (MkW (MkExtension shp chld)) = MkW $ Extension f (MkExtension shp (\ p => map f (chld p)))
|
||
|
-- Container.map inlined because of -------------------^
|
||
|
-- termination checking
|
||
|
|
||
|
export
|
||
|
foldr : (Extension c x -> x) -> W c -> x
|
||
|
foldr alg (MkW (MkExtension shp chld)) = alg (MkExtension shp (\ p => foldr alg (chld p)))
|
||
|
|
||
|
export
|
||
|
para : (Extension c (x, W c) -> x) -> W c -> x
|
||
|
para alg (MkW (MkExtension shp chld)) = alg (MkExtension shp (\ p => let w = chld p in (para alg w, w)))
|
||
|
|
||
|
namespace Monad
|
||
|
|
||
|
||| @Free@ is a wrapper around @W@ to make it inference friendly.
|
||
|
||| Without this wrapper, neither @pure@ nor @bind@ are able to infer their @c@ argument.
|
||
|
public export
|
||
|
record Free (c : Container) (x : Type) where
|
||
|
constructor MkFree
|
||
|
runFree : W (Sum c (Const x))
|
||
|
|
||
|
export
|
||
|
pure : x -> Free c x
|
||
|
pure x = MkFree $ MkW (toSum (Right (toConst x)))
|
||
|
|
||
|
export
|
||
|
(>>=) : Free c x -> (x -> Free c y) -> Free c y
|
||
|
(>>=) (MkFree mx) k = foldr (alg . fromSum {c} {d = Const x}) mx where
|
||
|
|
||
|
alg : Either (Extension c (Free c y)) (Extension (Const x) (Free c y)) -> Free c y
|
||
|
alg = either (MkFree . MkW . toSum {c} {d = Const y} . Left . map (runFree {c}))
|
||
|
(k . fromConst {k = x})
|
||
|
|
||
|
export
|
||
|
join : Free c (Free c x) -> Free c x
|
||
|
join = (>>= id)
|
||
|
|
||
|
namespace Final
|
||
|
|
||
|
public export
|
||
|
data M : Container -> Type where
|
||
|
MkM : Extension c (Inf (M c)) -> M c
|
||
|
|
||
|
export
|
||
|
unfoldr : (s -> Extension c s) -> s -> M c
|
||
|
unfoldr next seed =
|
||
|
let (MkExtension shp chld) = next seed in
|
||
|
MkM (MkExtension shp (\ p => unfoldr next (chld p)))
|
||
|
|
||
|
namespace Comonad
|
||
|
|
||
|
||| @Cofree@ is a wrapper around @M@ to make it inference friendly.
|
||
|
||| Without this wrapper, neither @extract@ nor @extend@ are able to infer their @c@ argument.
|
||
|
public export
|
||
|
record Cofree (c : Container) (x : Type) where
|
||
|
constructor MkCofree
|
||
|
runCofree : M (Pair (Const x) c)
|
||
|
|
||
|
export
|
||
|
extract : Cofree c x -> x
|
||
|
extract (MkCofree (MkM m)) = fst (shape m)
|
||
|
|
||
|
export
|
||
|
extend : (Cofree c a -> b) -> Cofree c a -> Cofree c b
|
||
|
extend alg = MkCofree . unfoldr next . runCofree where
|
||
|
|
||
|
next : M (Pair (Const a) c) -> Extension (Pair (Const b) c) (M (Pair (Const a) c))
|
||
|
next m@(MkM layer) =
|
||
|
let (_, (MkExtension shp chld)) = fromPair {c = Const a} layer in
|
||
|
let b = toConst (alg (MkCofree m)) in
|
||
|
toPair (b, MkExtension shp (\ p => chld p))
|
||
|
-- Eta-expanded to force Inf ------^
|
||
|
|
||
|
export
|
||
|
duplicate : Cofree c a -> Cofree c (Cofree c a)
|
||
|
duplicate = extend id
|
||
|
|
||
|
------------------------------------------------------------------------
|
||
|
-- Derivative
|
||
|
|
||
|
namespace Derivative
|
||
|
|
||
|
public export
|
||
|
Derivative : Container -> Container
|
||
|
Derivative c = MkContainer
|
||
|
(s : Shape c ** Position c s)
|
||
|
(\ (s ** p) => (p' : Position c s ** Not (p === p')))
|
||
|
|
||
|
export
|
||
|
hole : (v : Extension (Derivative c) x) -> Position c (fst (shape v))
|
||
|
hole (MkExtension (shp ** p) _) = p
|
||
|
|
||
|
export
|
||
|
unplug : (v : Extension c x) -> Position c (shape v) -> (Extension (Derivative c) x, x)
|
||
|
unplug (MkExtension shp chld) p = (MkExtension (shp ** p) (chld . fst), chld p)
|
||
|
|
||
|
export
|
||
|
plug : (v : Extension (Derivative c) x) -> DecEq (Position c (fst (shape v))) => x -> Extension c x
|
||
|
plug (MkExtension (shp ** p) chld) x = MkExtension shp $ \ p' => case decEq p p' of
|
||
|
Yes eq => x
|
||
|
No neq => chld (p' ** neq)
|
||
|
|
||
|
export
|
||
|
toConst : Extension (Const Void) x -> Extension (Derivative (Const k)) x
|
||
|
toConst v = absurd (fromConst v)
|
||
|
|
||
|
export
|
||
|
fromConst : Extension (Derivative (Const k)) x -> Extension (Const Void) x
|
||
|
fromConst v = absurd (hole {c = Const _} v)
|
||
|
|
||
|
export
|
||
|
toIdentity : Extension (Derivative Identity) x
|
||
|
toIdentity = MkExtension (() ** ()) (\ (() ** eq) => absurd (eq Refl))
|
||
|
|
||
|
export
|
||
|
toSum : Extension (Sum (Derivative c) (Derivative d)) x ->
|
||
|
Extension (Derivative (Sum c d)) x
|
||
|
toSum v = case fromSum {c = Derivative c} {d = Derivative d} v of
|
||
|
Left (MkExtension (shp ** p) chld) => MkExtension (Left shp ** p) chld
|
||
|
Right (MkExtension (shp ** p) chld) => MkExtension (Right shp ** p) chld
|
||
|
|
||
|
export
|
||
|
fromSum : Extension (Derivative (Sum c d)) x ->
|
||
|
Extension (Sum (Derivative c) (Derivative d)) x
|
||
|
fromSum (MkExtension (shp ** p) chld) = toSum {c = Derivative c} {d = Derivative d} $ case shp of
|
||
|
Left shp => Left (MkExtension (shp ** p) chld)
|
||
|
Right shp => Right (MkExtension (shp ** p) chld)
|
||
|
|
||
|
export
|
||
|
toPair : Extension (Sum (Pair (Derivative c) d) (Pair c (Derivative d))) x ->
|
||
|
Extension (Derivative (Pair c d)) x
|
||
|
toPair v = case fromSum {c = Pair (Derivative c) d} {d = Pair c (Derivative d)} v of
|
||
|
Left p => let (MkExtension (shp1 ** p1) chld1, MkExtension shp2 chld2) = fromPair {c = Derivative c} p in
|
||
|
MkExtension ((shp1, shp2) ** Left p1) $ \ (p' ** neq) => case p' of
|
||
|
Left p1' => chld1 (p1' ** (neq . cong Left))
|
||
|
Right p2' => chld2 p2'
|
||
|
Right p => let (MkExtension shp1 chld1, MkExtension (shp2 ** p2) chld2) = fromPair {c} {d = Derivative d} p in
|
||
|
MkExtension ((shp1, shp2) ** Right p2) $ \ (p' ** neq) => case p' of
|
||
|
Left p1' => chld1 p1'
|
||
|
Right p2' => chld2 (p2' ** (neq . cong Right))
|
||
|
|
||
|
export
|
||
|
fromPair : Extension (Derivative (Pair c d)) x ->
|
||
|
Extension (Sum (Pair (Derivative c) d) (Pair c (Derivative d))) x
|
||
|
fromPair (MkExtension ((shp1, shp2) ** p) chld) = case p of
|
||
|
Left p1 => toSum {c = Pair (Derivative c) d} {d = Pair c (Derivative d)}
|
||
|
(Left (MkExtension ((shp1 ** p1), shp2) $ either
|
||
|
(\ p1' => chld (Left (DPair.fst p1') ** DPair.snd p1' . leftInjective))
|
||
|
(\ p2 => chld (Right p2 ** absurd))))
|
||
|
Right p2 => toSum {c = Pair (Derivative c) d} {d = Pair c (Derivative d)}
|
||
|
(Right (MkExtension (shp1, (shp2 ** p2)) $ either
|
||
|
(\ p1 => chld (Left p1 ** absurd))
|
||
|
(\ p2' => chld (Right (DPair.fst p2') ** DPair.snd p2' . rightInjective))))
|
||
|
|
||
|
|
||
|
export
|
||
|
fromCompose : Extension (Derivative (Compose c d)) x ->
|
||
|
Extension (Pair (Derivative d) (Compose (Derivative c) d)) x
|
||
|
fromCompose (MkExtension (MkExtension shp1 shp2 ** (p1 ** p2)) chld)
|
||
|
= toPair (left, right) where
|
||
|
|
||
|
left : Extension (Derivative d) x
|
||
|
left = MkExtension (shp2 p1 ** p2)
|
||
|
$ \ (p2' ** neqp2) => chld ((p1 ** p2') ** neqp2 . mkDPairInjectiveSnd)
|
||
|
|
||
|
right : Extension (Compose (Derivative c) d) x
|
||
|
right = toCompose
|
||
|
$ MkExtension (shp1 ** p1)
|
||
|
$ \ (p1' ** neqp1) => MkExtension (shp2 p1')
|
||
|
$ \ p2' => chld ((p1' ** p2') ** (neqp1 . cong fst))
|
||
|
|
||
|
export
|
||
|
toCompose : ((s : _) -> DecEq (Position c s)) -> ((s : _) -> DecEq (Position d s)) ->
|
||
|
Extension (Pair (Derivative d) (Compose (Derivative c) d)) x ->
|
||
|
Extension (Derivative (Compose c d)) x
|
||
|
toCompose dec1 dec2 v with (fromPair {c = Derivative d} {d = Compose (Derivative c) d} v)
|
||
|
toCompose dec1 dec2 v | (MkExtension (shp2 ** p2) chld2, w) with (fromCompose w)
|
||
|
toCompose dec1 dec2 v
|
||
|
| (MkExtension (shp2 ** p2) chld2, w)
|
||
|
| (MkExtension (shp1 ** p1) chld1)
|
||
|
= MkExtension (MkExtension shp1 (\ p1' => shp2' p1' (decEq @{dec1 shp1} p1 p1')) **
|
||
|
(p1 ** (p2' (decEq @{dec1 shp1} p1 p1))))
|
||
|
$ \ ((p1' ** p2'') ** neq) => chld2' p1' p2'' neq
|
||
|
|
||
|
where
|
||
|
shp2' : (p1' : Position c shp1) -> Dec (p1 === p1') -> Shape d
|
||
|
shp2' p1' (Yes eq) = shp2
|
||
|
shp2' p1' (No neq) = shape (chld1 (p1' ** neq))
|
||
|
|
||
|
p2' : (eq : Dec (p1 === p1)) -> Position d (shp2' p1 eq)
|
||
|
p2' (Yes Refl) = p2
|
||
|
p2' (No neq) = absurd (neq Refl)
|
||
|
|
||
|
chld2' : (p1' : Position c shp1) ->
|
||
|
(p2'' : Position d (shp2' p1' (decEq @{dec1 shp1} p1 p1'))) ->
|
||
|
(neq : Not (MkDPair p1 (p2' (decEq @{dec1 shp1} p1 p1)) = MkDPair p1' p2'')) -> x
|
||
|
chld2' p1' p2'' neq with (decEq @{dec1 shp1} p1 p1')
|
||
|
chld2' p1' p2'' neq | No neq1 = payloads (chld1 (p1' ** neq1)) p2''
|
||
|
chld2' _ p2'' neq | Yes Refl with (decEq @{dec1 shp1} p1 p1)
|
||
|
chld2' _ p2'' neq | Yes Refl | No argh = absurd (argh Refl)
|
||
|
chld2' _ p2'' neq | Yes Refl | Yes Refl with (decEq @{dec2 shp2} p2 p2'')
|
||
|
chld2' _ p2'' neq | Yes Refl | Yes Refl | No neq2 = chld2 (p2'' ** neq2)
|
||
|
chld2' _ _ neq | Yes Refl | Yes Refl | Yes Refl = absurd (neq Refl)
|