Idris2/libs/papers/Data/W.idr

468 lines
15 KiB
Idris
Raw Normal View History

-- The content of this module is based on the paper
-- Computing with Generic Trees in Agda
-- by Stephen Dolan
-- https://dl.acm.org/doi/abs/10.1145/3546196.3550165
module Data.W
import Data.Maybe
%default total
namespace Finitary
data Fin : Type where
AVoid : Fin
AUnit : (nm : String) -> Fin
(||) : (d, e : Fin) -> Fin
namespace Fin
public export
fromString : String -> Fin
fromString = AUnit
namespace Examples
fbb : Fin
fbb = "foo" || "bar" || "baz"
record NamedUnit (nm : String) where
constructor MkNamedUnit
Elem : Fin -> Type
Elem AVoid = Void
Elem (AUnit nm) = NamedUnit nm
Elem (d || e) = Either (Elem d) (Elem e)
lookup : (d : Fin) -> String -> Maybe (Elem d)
lookup AVoid s = Nothing
lookup (AUnit nm) s = MkNamedUnit <$ guard (nm == s)
lookup (d || e) s = Left <$> lookup d s <|> Right <$> lookup e s
-- using a record to help the unifier
record Shape (d : Fin) where
constructor MkShape
runShape : Elem d
namespace Shape
export
fromString : {d : Fin} -> (nm : String) ->
IsJust (lookup d nm) => Shape d
fromString {d} nm = MkShape (fromJust (lookup d nm))
namespace Examples
bar : Shape Examples.fbb
bar = "bar"
record One (nm : String) (s : Type) where
constructor MkOne
runOne : s
Arr : Fin -> Type -> Type
Arr AVoid r = ()
Arr (AUnit nm) r = One nm r
Arr (d || e) r = (Arr d r, Arr e r)
infixr 0 ~>
record (~>) (d : Fin) (r : Type) where
constructor MkArr
runArr : Arr d r
infix 5 .=
(.=) : (nm : String) -> s -> One nm s
nm .= v = MkOne v
namespace Examples
isBar : Examples.fbb ~> Bool
isBar = MkArr
( "foo" .= False
, "bar" .= True
, "baz" .= False
)
lamArr : (d : Fin) -> (Elem d -> r) -> Arr d r
lamArr AVoid f = ()
lamArr (AUnit nm) f = MkOne (f MkNamedUnit)
lamArr (d || e) f = (lamArr d (f . Left), lamArr e (f . Right))
lam : {d : Fin} -> (Elem d -> r) -> (d ~> r)
lam {d} = MkArr . lamArr d
appArr : (d : Fin) -> Arr d r -> (Elem d -> r)
appArr AVoid f t = absurd t
appArr (AUnit nm) f t = runOne f
appArr (d || e) f (Left x) = appArr d (fst f) x
appArr (d || e) f (Right x) = appArr e (snd f) x
infixl 0 $$
($$) : {d : Fin} -> (d ~> r) -> (Elem d -> r)
MkArr f $$ x = appArr d f x
beta : {d : Fin} -> (f : Elem d -> r) -> (x : Elem d) ->
(lam {d} f $$ x) === f x
beta = go d where
go : (d : Fin) -> (f : Elem d -> r) -> (x : Elem d) ->
(appArr d (lamArr d f) x) === f x
go AVoid f x = absurd x
go (AUnit nm) f MkNamedUnit = Refl
go (d || e) f (Left x) = go d (f . Left) x
go (d || e) f (Right x) = go e (f . Right) x
eta : {d : Fin} -> (f : d ~> r) -> f === lam (\ x => f $$ x)
eta (MkArr f) = cong MkArr (go d f) where
go : (d : Fin) -> (f : Arr d r) ->
f === lamArr d (\ x => appArr {r} d f x)
go AVoid () = Refl
go (AUnit nm) (MkOne v) = Refl
go (d || e) (f, g) = cong2 MkPair (go d f) (go e g)
ext : {d : Fin} -> (f, g : Elem d -> r) ->
(eq : (x : Elem d) -> f x === g x) ->
lam f === lam {d} g
ext f g eq = cong MkArr (go d eq) where
go : (d : Fin) -> {f, g : Elem d -> r} ->
(eq : (x : Elem d) -> f x === g x) ->
lamArr d f === lamArr d g
go AVoid eq = Refl
go (AUnit nm) eq = cong MkOne (eq MkNamedUnit)
go (d || e) eq =
cong2 MkPair (go d (\ t => eq (Left t)))
(go e (\ t => eq (Right t)))
PiArr : (d : Fin) -> (b : Arr d Type) -> Type
PiArr AVoid b = ()
PiArr (AUnit nm) b = One nm (runOne b)
PiArr (d || e) b = (PiArr d (fst b), PiArr e (snd b))
record Pi (d : Fin) (b : d ~> Type) where
constructor MkPi
runPi : PiArr d (runArr b)
namespace Dependent
lamArr : (d : Fin) -> {0 b : Arr d Type} ->
((x : Elem d) -> appArr d b x) -> PiArr d b
lamArr AVoid f = ()
lamArr (AUnit nm) f = MkOne (f MkNamedUnit)
lamArr (d || e) f =
( Dependent.lamArr d (\ x => f (Left x))
, Dependent.lamArr e (\ x => f (Right x)))
export
lam : {d : Fin} -> {0 b : d ~> Type} ->
((x : Elem d) -> b $$ x) -> Pi d b
lam {b = MkArr b} f = MkPi (Dependent.lamArr d f)
public export
appArr : (d : Fin) -> {0 b : Arr d Type} ->
PiArr d b -> ((x : Elem d) -> appArr d b x)
appArr AVoid f x = absurd x
appArr (AUnit nm) f x = runOne f
appArr (d || e) (f, g) (Left x) = Dependent.appArr d f x
appArr (d || e) (f, g) (Right x) = Dependent.appArr e g x
export
($$) : {d : Fin} -> {0 b : d ~> Type} ->
Pi d b -> ((x : Elem d) -> b $$ x)
($$) {b = MkArr b} (MkPi f) x = Dependent.appArr d f x
export
beta : {d : Fin} -> {0 b : d ~> Type} ->
(f : (x : Elem d) -> b $$ x) ->
(x : Elem d) -> (lam {b} f $$ x) === f x
beta {b = MkArr b} f x = go d f x where
go : (d : Fin) -> {0 b : Arr d Type} ->
(f : (x : Elem d) -> appArr d b x) ->
(x : Elem d) -> appArr d {b} (lamArr d {b} f) x === f x
go AVoid f x = absurd x
go (AUnit nm) f MkNamedUnit = Refl
go (d || e) f (Left x) = go d (\ x => f (Left x)) x
go (d || e) f (Right x) = go e (\ x => f (Right x)) x
export
eta : {d : Fin} -> {0 b : d ~> Type} ->
(f : Pi d b) -> lam {b} (\ x => f $$ x) === f
eta {b = MkArr b} (MkPi f) = cong MkPi (go d f) where
go : (d : Fin) -> {0 b : Arr d Type} ->
(f : PiArr d b) -> (lamArr d {b} $ \ x => appArr d {b} f x) === f
go AVoid () = Refl
go (AUnit nm) (MkOne f) = Refl
go (d || e) (f, g) = cong2 MkPair (go d f) (go e g)
export
ext : {d : Fin} -> {0 b : d ~> Type} ->
(f, g : (x : Elem d) -> b $$ x) ->
(eq : (x : Elem d) -> f x === g x) ->
lam {b} f === lam g
ext {b = MkArr b} f g eq = cong MkPi (go d eq) where
go : (d : Fin) -> {0 b : Arr d Type} ->
{f, g : (x : Elem d) -> appArr d b x} ->
(eq : (x : Elem d) -> f x === g x) ->
lamArr d {b} f === lamArr d {b} g
go AVoid eq = Refl
go (AUnit nm) eq = cong MkOne (eq MkNamedUnit)
go (d || e) eq =
cong2 MkPair (go d (\x => eq (Left x)))
(go e (\x => eq (Right x)))
data W : (sh : Type) -> (pos : sh -> Fin) -> Type where
MkW : (s : sh) -> (pos s ~> W sh pos) -> W sh pos
mkW : (s : sh) -> Arr (pos s) (W sh pos) -> W sh pos
mkW s f = MkW s (MkArr f)
elim : {0 sh : Type} -> {pos : sh -> Fin} ->
(0 pred : W sh pos -> Type) ->
(step : (s : sh) -> (ts : pos s ~> W sh pos) ->
(Pi (pos s) (lam $ \ p => pred (ts $$ p))) ->
pred (MkW s ts)) ->
(w : W sh pos) -> pred w
elim pred step (MkW s (MkArr ts))
= step s (MkArr ts) (MkPi $ ih (pos s) ts) where
ih : (d : Fin) -> (ts : Arr d (W sh pos)) ->
PiArr d (lamArr d $ \ p => pred (appArr d ts p))
ih AVoid ts = ()
ih (AUnit nm) (MkOne ts) = MkOne (elim pred step ts)
ih (d || e) (ts, us) = (ih d ts, ih e us)
cases : {d : Fin} -> {0 b : Shape d -> Type} ->
PiArr d (lamArr d (b . MkShape)) -> (x : Shape d) -> b x
cases f (MkShape x) = go (b . MkShape) f x where
go : (0 b : Elem d -> Type) ->
PiArr d (lamArr d b) -> (x : Elem d) -> b x
go b f x = rewrite sym (Finitary.beta {d} b x) in Dependent.appArr d f x
namespace Examples
public export
NAT : Type
NAT = W (Shape ("zero" || "succ")) $ cases
( "zero" .= AVoid
, "succ" .= "x"
)
zero : NAT
zero = mkW "zero" ()
succ : NAT -> NAT
succ x = mkW "succ" ("x" .= x)
NATind : (0 pred : NAT -> Type) ->
pred Examples.zero ->
((n : NAT) -> pred n -> pred (succ n)) ->
(n : NAT) -> pred n
NATind pred pZ pS = elim pred $ cases ("zero" .= pZero, "succ" .= pSucc)
where
-- we're forced to do quite a bit of additional pattern matching
-- because of a lack of eta
pZero : (k : AVoid ~> ?) -> ? -> pred (MkW "zero" k)
pZero (MkArr ()) ih = pZ
pSucc : (k : "x" ~> ?) -> Pi "x" (lam (\ p => pred (k $$ p))) -> pred (MkW "succ" k)
pSucc (MkArr (MkOne k)) (MkPi (MkOne ih)) = pS k ih
NATindZ : {0 pred : NAT -> Type} -> {0 pZ, pS : ?} ->
NATind pred pZ pS Examples.zero === pZ
NATindZ = Refl
NATindS : {0 pred : NAT -> Type} -> {0 pZ : ?} ->
{pS : (n : NAT) -> pred n -> pred (succ n)} ->
{0 n : NAT} -> NATind pred pZ pS (succ n) === pS n (NATind pred pZ pS n)
NATindS = Refl
namespace PartitionedSets
record PSet where
constructor MkPSet
parts : Fin
elems : parts ~> Type
mkPSet : (d : Fin) -> Arr d Type -> PSet
mkPSet d e = MkPSet d (MkArr e)
ElemArr : (parts : Fin) -> Arr parts Type -> Type
ElemArr AVoid elt = Void
ElemArr (AUnit nm) (MkOne e) = One nm e
ElemArr (d || e) (f, g) = Either (ElemArr d f) (ElemArr e g)
Elem : PSet -> Type
Elem (MkPSet d (MkArr elt)) = ElemArr d elt
el : {d : Fin} -> {e : d ~> Type} -> (x : Elem d) -> e $$ x -> Elem (MkPSet d e)
el {e = MkArr e} x ex = go d e x ex where
go : (d : Fin) -> (e : Arr d Type) -> (x : Elem d) -> appArr d e x -> ElemArr d e
go AVoid e x ex = x
go (AUnit nm) (MkOne e) x ex = MkOne ex
go (d || e) (f, g) (Left x) ex = Left (go d f x ex)
go (d || e) (f, g) (Right x) ex = Right (go e g x ex)
Arr : (d : Fin) -> Arr d Type -> Type -> Type
Arr AVoid e r = ()
Arr (AUnit nm) (MkOne e) r = One nm (e -> r)
Arr (d || e) (f , g) r = (Arr d f r, Arr e g r)
record (~>) (p : PSet) (r : Type) where
constructor MkArr
runArr : Arr p.parts p.elems.runArr r
PiArr : (d : Fin) -> (e : Arr d Type) -> Arr d e Type -> Type
PiArr AVoid e r = ()
PiArr (AUnit nm) (MkOne e) (MkOne r) = One nm ((x : e) -> r x)
PiArr (d || e) (f, g) r = (PiArr d f (fst r), PiArr e g (snd r))
record Pi (p : PSet) (r : p ~> Type) where
constructor MkPi
runPi : PiArr p.parts p.elems.runArr r.runArr
lamArr : (d : Fin) -> (e : Arr d Type) ->
(ElemArr d e -> r) -> (Arr d e r)
lamArr AVoid f b = ()
lamArr (AUnit nm) (MkOne f) b = MkOne (b . MkOne)
lamArr (d || e) (f, g) b = (lamArr d f (b . Left), lamArr e g (b . Right))
lam : {p : PSet} -> (Elem p -> r) -> (p ~> r)
lam {p = MkPSet d (MkArr e)} f = MkArr (lamArr d e f)
appArr : (d : Fin) -> (e : Arr d Type) ->
(Arr d e r) -> (ElemArr d e -> r)
appArr AVoid e b x = absurd x
appArr (AUnit nm) (MkOne e) (MkOne b) (MkOne x) = b x
appArr (d || e) (f, g) (b , c) (Left x) = appArr d f b x
appArr (d || e) (f, g) (b , c) (Right x) = appArr e g c x
($$) : {p : PSet} -> (p ~> r) -> Elem p -> r
($$) {p = MkPSet d (MkArr e)} (MkArr b) = appArr d e b
namespace Dependent
public export
lamArr : (d : Fin) -> (e : Arr d Type) -> (k : Arr d e Type) ->
((x : ElemArr d e) -> appArr d e k x) ->
PiArr d e k
lamArr AVoid e k b = ()
lamArr (AUnit nm) (MkOne e) (MkOne k) b = MkOne (\ x => b (MkOne x))
lamArr (d || e) (f, g) (k, l) b
= ( lamArr d f k (\ x => b (Left x))
, lamArr e g l (\ x => b (Right x)))
public export
lam : {p : PSet} -> {k : p ~> Type} ->
((x : Elem p) -> k $$ x) -> Pi p k
lam {p = MkPSet d (MkArr e)} {k = MkArr k} b = MkPi (lamArr d e k b)
public export
appArr : (d : Fin) -> (e : Arr d Type) -> (k : Arr d e Type) ->
PiArr d e k ->
((x : ElemArr d e) -> appArr d e k x)
appArr AVoid e k b x = absurd x
appArr (AUnit nm) (MkOne e) (MkOne k) (MkOne b) (MkOne x) = b x
appArr (d || e) (f, g) (k, l) (b, c) (Left x) = appArr d f k b x
appArr (d || e) (f, g) (k, l) (b, c) (Right x) = appArr e g l c x
public export
($$) : {p : PSet} -> {k : p ~> Type} ->
Pi p k -> ((x : Elem p) -> k $$ x)
($$) {p = MkPSet d (MkArr e)} {k = MkArr k} (MkPi b) = appArr d e k b
data W : (sh : Type) -> (pos : sh -> PSet) -> Type where
MkW : (s : sh) -> (k : pos s ~> W sh pos) -> W sh pos
mkW : {pos : sh -> PSet} ->
(s : sh) -> Arr ((pos s).parts) ((pos s) .elems .runArr) (W sh pos) ->
W sh pos
mkW s f = MkW s (MkArr f)
elim : {0 sh : Type} -> {pos : sh -> PSet} ->
(0 pred : W sh pos -> Type) ->
(step : (s : sh) -> (ts : pos s ~> W sh pos) ->
(Pi (pos s) (lam $ \ p => pred (ts $$ p))) ->
pred (MkW s ts)) ->
(w : W sh pos) -> pred w
elim pred step (MkW s (MkArr ts)) with (step s) | (pos s)
_ | steps | MkPSet d (MkArr e) = steps (MkArr ts) (MkPi $ ih d e ts) where
ih : (d : Fin) -> (e : Arr d Type) -> (ts : Arr d e (W sh pos)) ->
PiArr d e (lamArr d e $ \ p => pred (appArr d e ts p))
ih AVoid e ts = ()
ih (AUnit nm) (MkOne e) (MkOne ts) = MkOne (\ x => elim pred step (ts x))
ih (d || e) (f, g) (ts, us) = (ih d f ts, ih e g us)
namespace Examples
-- proceed with the following assumption
parameters { auto etaUnit : forall a. (o : () -> a) -> o === (\ _ => o ()) }
ORD : Type
ORD = PartitionedSets.W (Shape ("zero" || "succ" || "lim")) $ cases
( "zero" .= mkPSet AVoid ()
, "succ" .= mkPSet "x" ("x" .= ())
, "lim" .= mkPSet "f" ("f" .= NAT)
)
zero : ORD
zero = mkW "zero" ()
succ : ORD -> ORD
succ o = mkW "succ" ("x" .= \ _ => o)
lim : (NAT -> ORD) -> ORD
lim f = mkW "lim" ("f" .= f)
ORDind : (0 pred : ORD -> Type) ->
pred Examples.zero ->
((n : ORD) -> pred n -> pred (succ n)) ->
((f : NAT -> ORD) -> ((n : NAT) -> pred (f n)) -> pred (lim f)) ->
(n : ORD) -> pred n
ORDind pred pZ pS pL
= elim pred
$ cases ("zero" .= pZero, "succ" .= pSucc, "lim" .= pLim)
where
-- we're forced to do quite a bit of additional pattern matching
-- because of a lack of eta
pZero : (o : mkPSet AVoid () ~> ORD) -> ? -> pred (MkW "zero" o)
pZero (MkArr ()) ih = pZ
pSucc : (o : mkPSet (AUnit "x") ("x" .= ()) ~> ORD) ->
Pi (mkPSet (AUnit "x") ("x" .= ())) (lam (\p => pred (o $$ p))) ->
pred (MkW "succ" o)
pSucc (MkArr (MkOne o)) (MkPi (MkOne po)) =
rewrite etaUnit o in pS (o ()) (po ())
pLim : (o : mkPSet (AUnit "f") ("f" .= ?A) ~> ORD) ->
Pi (mkPSet (AUnit "f") ("f" .= ?B)) (lam (\p => pred (o $$ p))) ->
pred (MkW "lim" o)
pLim (MkArr (MkOne o)) (MkPi (MkOne po)) = pL o po
ORDindZ : {0 pred : ORD -> Type} -> {0 pZ, pS, pL : ?} ->
ORDind pred pZ pS pL Examples.zero === pZ
ORDindZ = Refl
ORDindS : {0 pred : ORD -> Type} -> {0 pZ, pL : ?} ->
{pS : (n : ORD) -> pred n -> pred (succ n)} ->
{0 n : ORD} -> ORDind pred pZ pS pL (succ n) === pS n (ORDind pred pZ pS pL n)
ORDindS = Refl
ORDindL : {0 pred : ORD -> Type} -> {0 pZ, pS : ?} ->
{pL : (f : NAT -> ORD) -> ((n : NAT) -> pred (f n)) -> pred (lim f)} ->
{0 f : NAT -> ORD} -> ORDind pred pZ pS pL (lim f) === pL f (\ n => ORDind pred pZ pS pL (f n))
ORDindL = Refl