Idris2/tests/chez/newints/IntOps.idr

359 lines
11 KiB
Idris
Raw Normal View History

--
-- Specification
--
-- a. Unsigned integers
--
-- Unsigned integers with a precision of x bit have a valid
-- range of [0,2^x - 1]. They support all the usual arithmetic
-- operations: +,*,-,div, and mod. If the result y of an operation
-- is outside the valid range, the unsigned remainder modulo 2^x of y
-- is returned instead. The same kind of truncation happens when
-- other numeric types are cast to one of the unsigned integer
-- types.
--
-- Example: For `Bits8` the valid range is [0,255]. Below are some
-- example calculations. All numbers are considered to be of type `Bits8`
-- unless specified otherwise:
--
-- 255 + 7 = 6
-- 3 * 128 = 128
-- (-1) = 255
-- 7 - 10 = 253
--
-- b. Signed integers
--
-- Signed integers with a precision of x bit have a valid
-- range of [-2^(x-1),2^(x-1) - 1]. They support all the usual arithmetic
-- operations: +,*,-,div, and mod. If the result `y` of an operation
-- is outside the valid range, the signed remainder modulo 2^x of `y`
-- is calculated and 2^x subtracted from the result if it
-- is still out of bounds. The same kind of truncation happens when
-- other numeric types are cast to one of the signed integer
-- types.
--
-- Example: For `Int8` the valid range is [-128,127]. Below are some
-- example calculations. All numbers are considered to be of type `Int8`
-- unless specified otherwise:
--
-- 127 + 7 = -122
-- 3 * 64 = -64
-- 2 * (-64) = -128
-- (-129) = 127
-- 7 - 10 = -3
--
import Data.List
import Data.Stream
record IntType (a : Type) where
constructor MkIntType
name : String
signed : Bool
precision : Integer
min : Integer
max : Integer
intType : Bool -> String -> Integer -> IntType a
intType True n p = let ma = prim__shl_Integer 1 (p - 1)
in MkIntType n True p (negate ma) (ma - 1)
intType False n p = let ma = prim__shl_Integer 1 p
in MkIntType n False p 0 (ma - 1)
bits8 : IntType Bits8
bits8 = intType False "Bits8" 8
bits16 : IntType Bits16
bits16 = intType False "Bits16" 16
bits32 : IntType Bits32
bits32 = intType False "Bits32" 32
bits64 : IntType Bits64
bits64 = intType False "Bits64" 64
int8 : IntType Int8
int8 = intType True "Int8" 8
int16 : IntType Int16
int16 = intType True "Int16" 16
int32 : IntType Int32
int32 = intType True "Int32" 32
int64 : IntType Int64
int64 = intType True "Int64" 64
int : IntType Int
int = intType True "Int" 64
record Op a where
constructor MkOp
name : String
op : a -> a -> a
opInt : Integer -> Integer -> Integer
allowZero : Bool
type : IntType a
add : Num a => IntType a -> Op a
add = MkOp "+" (+) (+) True
sub : Neg a => IntType a -> Op a
sub = MkOp "-" (-) (-) True
mul : Num a => IntType a -> Op a
mul = MkOp "*" (*) (*) True
div : Integral a => IntType a -> Op a
div = MkOp "div" (div) (div) False
mod : Integral a => IntType a -> Op a
mod = MkOp "mod" (mod) (mod) False
pairs : List (Integer,Integer)
pairs = let -- [1,2,4,8,16,...,18446744073709551616]
powsOf2 = take 65 (iterate (*2) 1)
-- powsOf2 ++ [0,1,3,7,...,18446744073709551615]
naturals = powsOf2 ++ map (\x => x-1) powsOf2
-- positive and negative versions of naturals
ints = naturals ++ map negate naturals
-- naturals paired with ints
in [| (,) ints naturals |]
-- This check does the following: For a given binary operation `op`,
-- calculate the result of applying the operation to all passed pairs
-- of integers in `pairs` and check, with the given bit size, if
-- the result is out of bounds. If it is, calculate the result
-- modulo 2^bits. This gives the reference result as an `Integer`.
--
-- Now perform the same operation with the same input but for
-- the integer type we'd like to check and cast the result back
-- to an `Integer`. Create a nice error message for every pair
-- that fails (returns an empty list if all goes well).
check : (Num a, Cast a Integer) => Op a -> List String
check (MkOp name op opInt allowZero $ MkIntType type signed bits mi ma) =
let ps = if allowZero then pairs
else filter ((0 /=) . checkBounds . snd) pairs
in mapMaybe failing ps
where
trueMod : Integer -> Integer -> Integer
trueMod x y = let res = x `mod` y
in if res < 0 then res + y else res
checkBounds : Integer -> Integer
checkBounds n = let r1 = trueMod n (ma + 1 - mi)
in if r1 > ma
then r1 - (ma + 1 - mi)
else r1
failing : (Integer,Integer) -> Maybe String
failing (x,y) =
let resInteger = opInt x y
resMod = checkBounds $ opInt (checkBounds x) (checkBounds y)
resA = cast {to = Integer} (op (fromInteger x) (fromInteger y))
in if resA == resMod
then Nothing
else Just #"Error when calculating \#{show x} \#{name} \#{show y} for \#{type}: Expected \#{show resMod} but got \#{show resA} (unrounded: \#{show resInteger})"#
--------------------------------------------------------------------------------
-- Int8
--------------------------------------------------------------------------------
Show Int8 where
show = prim__cast_Int8String
Cast Int8 Integer where
cast = prim__cast_Int8Integer
Num Int8 where
(+) = prim__add_Int8
(*) = prim__mul_Int8
fromInteger = prim__cast_IntegerInt8
Neg Int8 where
(-) = prim__sub_Int8
negate = prim__sub_Int8 0
Integral Int8 where
div = prim__div_Int8
mod = prim__mod_Int8
--------------------------------------------------------------------------------
-- Int16
--------------------------------------------------------------------------------
Show Int16 where
show = prim__cast_Int16String
Cast Int16 Integer where
cast = prim__cast_Int16Integer
Num Int16 where
(+) = prim__add_Int16
(*) = prim__mul_Int16
fromInteger = prim__cast_IntegerInt16
Neg Int16 where
(-) = prim__sub_Int16
negate = prim__sub_Int16 0
Integral Int16 where
div = prim__div_Int16
mod = prim__mod_Int16
--------------------------------------------------------------------------------
-- Int32
--------------------------------------------------------------------------------
Show Int32 where
show = prim__cast_Int32String
Cast Int32 Integer where
cast = prim__cast_Int32Integer
Num Int32 where
(+) = prim__add_Int32
(*) = prim__mul_Int32
fromInteger = prim__cast_IntegerInt32
Neg Int32 where
(-) = prim__sub_Int32
negate = prim__sub_Int32 0
Integral Int32 where
div = prim__div_Int32
mod = prim__mod_Int32
--------------------------------------------------------------------------------
-- Int64
--------------------------------------------------------------------------------
Show Int64 where
show = prim__cast_Int64String
Cast Int64 Integer where
cast = prim__cast_Int64Integer
Num Int64 where
(+) = prim__add_Int64
(*) = prim__mul_Int64
fromInteger = prim__cast_IntegerInt64
Neg Int64 where
(-) = prim__sub_Int64
negate = prim__sub_Int64 0
Integral Int64 where
div = prim__div_Int64
mod = prim__mod_Int64
--------------------------------------------------------------------------------
-- Bits8
--------------------------------------------------------------------------------
Neg Bits8 where
(-) = prim__sub_Bits8
negate = prim__sub_Bits8 0
Integral Bits8 where
div = prim__div_Bits8
mod = prim__mod_Bits8
--------------------------------------------------------------------------------
-- Bits16
--------------------------------------------------------------------------------
Neg Bits16 where
(-) = prim__sub_Bits16
negate = prim__sub_Bits16 0
Integral Bits16 where
div = prim__div_Bits16
mod = prim__mod_Bits16
--------------------------------------------------------------------------------
-- Bits32
--------------------------------------------------------------------------------
Neg Bits32 where
(-) = prim__sub_Bits32
negate = prim__sub_Bits32 0
Integral Bits32 where
div = prim__div_Bits32
mod = prim__mod_Bits32
--------------------------------------------------------------------------------
-- Bits64
--------------------------------------------------------------------------------
Neg Bits64 where
(-) = prim__sub_Bits64
negate = prim__sub_Bits64 0
Integral Bits64 where
div = prim__div_Bits64
mod = prim__mod_Bits64
--------------------------------------------------------------------------------
-- Main
--------------------------------------------------------------------------------
main : IO ()
main = do traverse_ putStrLn . check $ add int8
traverse_ putStrLn . check $ sub int8
traverse_ putStrLn . check $ mul int8
traverse_ putStrLn . check $ div int8
traverse_ putStrLn . check $ mod int8
traverse_ putStrLn . check $ add int16
traverse_ putStrLn . check $ sub int16
traverse_ putStrLn . check $ mul int16
traverse_ putStrLn . check $ div int16
traverse_ putStrLn . check $ mod int16
traverse_ putStrLn . check $ add int32
traverse_ putStrLn . check $ sub int32
traverse_ putStrLn . check $ mul int32
traverse_ putStrLn . check $ div int32
traverse_ putStrLn . check $ mod int32
traverse_ putStrLn . check $ add int64
traverse_ putStrLn . check $ sub int64
traverse_ putStrLn . check $ mul int64
traverse_ putStrLn . check $ div int64
traverse_ putStrLn . check $ mod int64
traverse_ putStrLn . check $ add int
traverse_ putStrLn . check $ sub int
traverse_ putStrLn . check $ mul int
traverse_ putStrLn . check $ div int
traverse_ putStrLn . check $ mod int
traverse_ putStrLn . check $ add bits8
traverse_ putStrLn . check $ sub bits8
traverse_ putStrLn . check $ mul bits8
traverse_ putStrLn . check $ div bits8
traverse_ putStrLn . check $ mod bits8
traverse_ putStrLn . check $ add bits16
traverse_ putStrLn . check $ sub bits16
traverse_ putStrLn . check $ mul bits16
traverse_ putStrLn . check $ div bits16
traverse_ putStrLn . check $ mod bits16
traverse_ putStrLn . check $ add bits32
traverse_ putStrLn . check $ sub bits32
traverse_ putStrLn . check $ mul bits32
traverse_ putStrLn . check $ div bits32
traverse_ putStrLn . check $ mod bits32
traverse_ putStrLn . check $ add bits64
traverse_ putStrLn . check $ sub bits64
traverse_ putStrLn . check $ mul bits64
traverse_ putStrLn . check $ div bits64
traverse_ putStrLn . check $ mod bits64