Idris2/libs/base/Data/DPair.idr

152 lines
5.0 KiB
Idris
Raw Normal View History

module Data.DPair
import Decidable.Equality
%default total
2022-02-24 14:12:53 +03:00
namespace Pair
||| Constructive choice: a function producing pairs of a value and a proof
||| can be split into a function producing a value and a family of proofs
||| for the images of that function.
public export
choice :
{0 p : a -> b -> Type} ->
((x : a) -> (b ** p x b)) ->
(f : (a -> b) ** (x : a) -> p x (f x))
choice pr = ((\ x => fst (pr x)) ** \ x => snd (pr x))
namespace DPair
2022-02-24 14:12:53 +03:00
||| Constructive choice: a function producing pairs of a value and a proof
||| can be split into a function producing a value and a family of proofs
||| for the images of that function.
public export
choice :
{0 b : a -> Type} ->
{0 p : (x : a) -> b x -> Type} ->
((x : a) -> (y : b x ** p x y)) ->
(f : ((x : a) -> b x) ** (x : a) -> p x (f x))
choice pr = ((\ x => fst (pr x)) ** \ x => snd (pr x))
||| A function taking a pair of a value and a proof as an argument can be turned
||| into a function taking a value and a proof as two separate arguments.
||| Use `uncurry` to go in the other direction
public export
2022-02-24 14:12:53 +03:00
curry : {0 p : a -> Type} -> ((x : a ** p x) -> c) -> ((x : a) -> p x -> c)
curry f x y = f (x ** y)
2022-02-24 14:12:53 +03:00
||| A function taking a value and a proof as two separates arguments can be turned
||| into a function taking a pair of that value and its proof as a single argument.
||| Use `curry` to go in the other direction.
public export
2022-02-24 14:12:53 +03:00
uncurry : {0 p : a -> Type} -> ((x : a) -> p x -> c) -> ((x : a ** p x) -> c)
uncurry f s = f s.fst s.snd
2022-02-24 14:12:53 +03:00
||| Given a function on values and a family of proofs that this function takes
||| p-respecting inputs to q-respecting outputs,
||| we can turn: a pair of a value and a proof it is p-respecting
||| into: a pair of a value and a proof it is q-respecting
public export
2022-02-24 14:12:53 +03:00
bimap : {0 p : a -> Type} -> {0 q : b -> Type} ->
(f : a -> b) ->
(prf : forall x. p x -> q (f x)) ->
(x : a ** p x) -> (y : b ** q y)
bimap f g (x ** y) = (f x ** g y)
public export
DecEq k => ({x : k} -> Eq (v x)) => Eq (DPair k v) where
(k1 ** v1) == (k2 ** v2) = case decEq k1 k2 of
Yes Refl => v1 == v2
No _ => False
namespace Exists
||| A dependent pair in which the first field (witness) should be
||| erased at runtime.
|||
||| We can use `Exists` to construct dependent types in which the
||| type-level value is erased at runtime but used at compile time.
||| This type-level value could represent, for instance, a value
||| required for an intrinsic invariant required as part of the
||| dependent type's representation.
|||
||| @type The type of the type-level value in the proof.
||| @this The dependent type that requires an instance of `type`.
public export
record Exists {0 type : Type} this where
constructor Evidence
0 fst : type
snd : this fst
public export
curry : {0 p : a -> Type} -> (Exists p -> c) -> ({0 x : a} -> p x -> c)
curry f = f . Evidence _
public export
uncurry : {0 p : a -> Type} -> ({0 x : a} -> p x -> c) -> Exists p -> c
uncurry f ex = f ex.snd
export
evidenceInjectiveFst : Evidence x p = Evidence y q -> x = y
evidenceInjectiveFst Refl = Refl
export
evidenceInjectiveSnd : Evidence x p = Evidence x q -> p = q
evidenceInjectiveSnd Refl = Refl
public export
bimap : (0 f : a -> b) -> (forall x. p x -> q (f x)) -> Exists {type=a} p -> Exists {type=b} q
bimap f g (Evidence x y) = Evidence (f x) (g y)
namespace Subset
||| A dependent pair in which the second field (evidence) should not
||| be required at runtime.
|||
||| We can use `Subset` to provide extrinsic invariants about a
||| value and know that these invariants are erased at
||| runtime but used at compile time.
|||
||| @type The type-level value's type.
||| @pred The dependent type that requires an instance of `type`.
public export
record Subset type pred where
constructor Element
fst : type
0 snd : pred fst
public export
curry : {0 p : a -> Type} -> (Subset a p -> c) -> (x : a) -> (0 _ : p x) -> c
curry f x y = f $ Element x y
public export
uncurry : {0 p : a -> Type} -> ((x : a) -> (0 _ : p x) -> c) -> Subset a p -> c
uncurry f s = f s.fst s.snd
export
elementInjectiveFst : Element x p = Element y q -> x = y
elementInjectiveFst Refl = Refl
export
elementInjectiveSnd : Element x p = Element x q -> p = q
elementInjectiveSnd Refl = Refl
public export
bimap : (f : a -> b) -> (0 _ : forall x. p x -> q (f x)) -> Subset a p -> Subset b q
bimap f g (Element x y) = Element (f x) (g y)
public export
Eq type => Eq (Subset type pred) where
(==) = (==) `on` fst
public export
Ord type => Ord (Subset type pred) where
compare = compare `on` fst
||| This Show implementation replaces the (erased) invariant
||| with an underscore.
export
Show type => Show (Subset type pred) where
showPrec p (Element v _) = showCon p "Element" $ showArg v ++ " _"