Merge pull request #363 from edwinb/lineario

More on the Linear IO experiment
This commit is contained in:
Edwin Brady 2020-06-25 00:10:09 +01:00 committed by GitHub
commit 0f71464ab5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 163 additions and 63 deletions

View File

@ -1,7 +1,5 @@
module Control.Linear.LIO
import public Data.So
||| Like `Monad`, but the action and continuation must be run exactly once
||| to ensure that the computation is linear.
public export
@ -16,68 +14,87 @@ LinearBind IO where
public export
data Usage = None | Linear | Unrestricted
-- Not sure about this - it is a horrible hack, but it makes the notation
-- a bit nicer and consistent with the numbering on binders!
-- Not sure about this, it is a horrible hack, but it makes the notation
-- a bit nicer
public export
fromInteger : (x : Integer) -> {auto _ : So (x == 0 || x == 1)} -> Usage
fromInteger : (x : Integer) -> {auto _ : Either (x = 0) (x = 1)} -> Usage
fromInteger 0 = None
fromInteger 1 = Linear
fromInteger x = Unrestricted
||| A wrapper which allows operations to state the multiplicity of the value
||| they return. For example, `L IO {u=1} File` is an IO operation which returns
||| a file that must be used exactly once.
export
data L : (Type -> Type) ->
{default Unrestricted use : Usage} ->
Type -> Type where
MkL : (1 _ : io a) -> L io {use} a
||| Run a linear program with unrestricted return value in the underlying
||| context
export
run : L io a -> io a
run (MkL p) = p
public export
0 ContType : (Type -> Type) -> Usage -> Usage -> Type -> Type -> Type
||| A wrapper which allows operations to state the multiplicity of the value
||| they return. For example, `L IO {use=1} File` is an IO operation which
||| returns a file that must be used exactly once.
-- This is uglier than I'd like. Perhaps multiplicity polymorphism would make
-- it neater, but we don't have that (yet?), and fortunately none of this
-- horror has to be exposed to the user!
export
data L : (io : Type -> Type) ->
{default Unrestricted use : Usage} ->
(ty : Type) -> Type where
[search ty]
-- Three separate Pures, because we need to distinguish how they are
-- used, and this is neater than a continuation.
Pure0 : (0 _ : a) -> L io {use=0} a
Pure1 : (1 _ : a) -> L io {use=1} a
PureW : a -> L io a
-- The action is always run once, and the type makes an assertion about
-- how often it's safe to use the result.
Action : (1 _ : io a) -> L io {use} a
Bind : {u_act : _} ->
(1 _ : L io {use=u_act} a) ->
(1 _ : ContType io u_act u_k a b) ->
L io {use=u_k} b
ContType io None u_k a b = (0 _ : a) -> L io {use=u_k} b
ContType io Linear u_k a b = (1 _ : a) -> L io {use=u_k} b
ContType io Unrestricted u_k a b = a -> L io {use=u_k} b
export %inline
lio_bind : {u_act : _} ->
LinearBind io =>
(1 _ : L io {use=u_act} a) ->
(1 _ : ContType io u_act u_k a b) -> L io {use=u_k} b
lio_bind {u_act = None} (MkL act) k
= let (>>=) = bindL in
MkL $ do a' <- act
let MkL ka' = k a'
ka'
lio_bind {u_act = Linear} (MkL act) k
= let (>>=) = bindL in
MkL $ do a' <- act
let MkL ka' = k a'
ka'
lio_bind {u_act = Unrestricted} (MkL act) k
= let (>>=) = bindL in
MkL $ do a' <- act
let MkL ka' = k a'
ka'
RunCont : Usage -> Type -> Type -> Type
RunCont None t b = (0 _ : t) -> b
RunCont Linear t b = (1 _ : t) -> b
RunCont Unrestricted t b = t -> b
-- The repetition here is annoying, but necessary because we don't have
-- multiplicity polymorphism. We need to look at the usage to know what the
-- concrete type of the continuation is.
runK : {use : _} ->
LinearBind io =>
(1 _ : L io {use} a) -> (1 _ : RunCont use a (io b)) -> io b
runK (Pure0 x) k = k x
runK (Pure1 x) k = k x
runK (PureW x) k = k x
runK {use = None} (Action x) k = bindL x $ \x' => k x'
runK {use = Linear} (Action x) k = bindL x $ \x' => k x'
runK {use = Unrestricted} (Action x) k = bindL x $ \x' => k x'
runK (Bind {u_act = None} act next) k = runK act (\x => runK (next x) k)
runK (Bind {u_act = Linear} act next) k = runK act (\x => runK (next x) k)
runK (Bind {u_act = Unrestricted} act next) k = runK act (\x => runK (next x) k)
||| Run a linear program exactly once, with unrestricted return value in the
||| underlying context
run : (Applicative io, LinearBind io) =>
(1 _ : L io a) -> io a
run prog = runK prog pure
export
Functor io => Functor (L io {use}) where
map fn (MkL act) = MkL (map fn act)
Functor io => Functor (L io) where
map fn act = Bind act \a' => PureW (fn a')
export
Applicative io => Applicative (L io {use}) where
pure = MkL . pure
(<*>) (MkL f) (MkL a) = MkL (f <*> a)
Applicative io => Applicative (L io) where
pure = PureW
(<*>) f a
= f `Bind` \f' =>
a `Bind` \a' =>
PureW (f' a')
export
(Applicative m, LinearBind m) => Monad (L m) where
(>>=) = lio_bind
(>>=) = Bind
-- prioritise this one for concrete LIO, so we get the most useful
-- linearity annotations.
@ -86,18 +103,20 @@ export %inline
LinearBind io =>
(1 _ : L io {use=u_act} a) ->
(1 _ : ContType io u_act u_k a b) -> L io {use=u_k} b
(>>=) = lio_bind
(>>=) = Bind
export %inline
pure0 : (0 x : a) -> L io {use=0} a
pure0 = Pure0
export %inline
pure1 : (1 x : a) -> L io {use=1} a
pure1 = Pure1
export
(LinearBind io, HasIO io) => HasIO (L io) where
liftIO p = MkL (liftIO p)
liftIO p = Action (liftIO p)
public export
LinearIO : (Type -> Type) -> Type
LinearIO io = (LinearBind io, HasIO io)
-- Since the usage won't be known, we need this to be a %defaulthint to allow
-- using arbitrary IO operations at unrestricted multiplicity.
export %defaulthint
unrLIO : LinearBind io => HasIO io => HasIO (L io)
unrLIO = %search

View File

@ -434,13 +434,22 @@ concreteDets {vars} fc defaults env top pos dets (arg :: args)
concrete defs argnf True
concreteDets fc defaults env top (1 + pos) dets args
where
drop : Nat -> List Nat -> List t -> List t
drop i ns [] = []
drop i ns (x :: xs)
= if i `elem` ns
then x :: drop (1+i) ns xs
else drop (1+i) ns xs
concrete : Defs -> NF vars -> (atTop : Bool) -> Core ()
concrete defs (NBind nfc x b sc) atTop
= do scnf <- sc defs (toClosure defaultOpts env (Erased nfc False))
concrete defs scnf False
concrete defs (NTCon nfc n t a args) atTop
= do traverse (\ parg => do argnf <- evalClosure defs parg
concrete defs argnf False) args
= do sd <- getSearchData nfc False n
let args' = drop 0 (detArgs sd) args
traverse (\ parg => do argnf <- evalClosure defs parg
concrete defs argnf False) args'
pure ()
concrete defs (NDCon nfc n t a args) atTop
= do traverse (\ parg => do argnf <- evalClosure defs parg

View File

@ -1254,6 +1254,10 @@ export
showApp (Bind _ x (Pi c AutoImplicit ty) sc) []
= "{auto " ++ showCount c ++ show x ++ " : " ++ show ty ++
"} -> " ++ show sc
showApp (Bind _ x (Pi c (DefImplicit tm) ty) sc) []
= "{default " ++ show tm ++ " "
++ showCount c ++ show x ++ " : " ++ show ty ++
"} -> " ++ show sc
showApp (Bind _ x (PVar c Explicit ty) sc) []
= "pat " ++ showCount c ++ show x ++ " : " ++ show ty ++
" => " ++ show sc

View File

@ -251,13 +251,20 @@ checkTermSub defining mode opts nest env env' sub tm ty
_ => throw err)
pure (fst res)
where
bindImps' : {vs : _} ->
FC -> Env Term vs -> List (Name, Term vs) -> RawImp ->
Core RawImp
bindImps' loc env [] ty = pure ty
bindImps' loc env ((n, ty) :: ntys) sc
= pure $ IPi loc erased Implicit (Just n)
(Implicit loc True) !(bindImps' loc env ntys sc)
bindImps : {vs : _} ->
FC -> Env Term vs -> List (Name, Term vs) -> RawImp ->
Core RawImp
bindImps loc env [] ty = pure ty
bindImps loc env ((n, ty) :: ntys) sc
= pure $ IPi loc erased Implicit (Just n)
!(unelabNoSugar env ty) !(bindImps loc env ntys sc)
bindImps loc env ns (IBindHere fc m ty)
= pure $ IBindHere fc m !(bindImps' loc env ns ty)
bindImps loc env ns ty = bindImps' loc env ns ty
export
checkTerm : {vars : _} ->

View File

@ -266,6 +266,7 @@ mutual
_ => pure True
needsDelayExpr True (IApp _ f _) = needsDelayExpr True f
needsDelayExpr True (IImplicitApp _ f _ _) = needsDelayExpr True f
needsDelayExpr True (ILam _ _ _ _ _ _) = pure True
needsDelayExpr True (ICase _ _ _ _) = pure True
needsDelayExpr True (ILocal _ _ _) = pure True
needsDelayExpr True (IUpdate _ _ _) = pure True

View File

@ -141,6 +141,10 @@ checkLambda rig_in elabinfo nest env fc rigl info n argTy scope Nothing
inferLambda rig elabinfo nest env fc rigl info n argTy scope Nothing
checkLambda rig_in elabinfo nest env fc rigl info n argTy scope (Just expty_in)
= do let rig = the RigCount $ if isErased rig_in then erased else linear
let solvemode = case elabMode elabinfo of
InLHS _ => inLHS
_ => inTermP False
solveConstraints solvemode Normal
expty <- getTerm expty_in
exptynf <- getTyNF env expty
defs <- get Ctxt

View File

@ -71,6 +71,7 @@ idrisTests
-- QTT and linearity related
"linear001", "linear002", "linear003", "linear004", "linear005",
"linear006", "linear007", "linear008", "linear009", "linear010",
"linear011",
-- Namespace blocks
"namespace001",
-- Parameters blocks

View File

@ -1,6 +1,6 @@
1/1: Building wcov (wcov.idr)
Main> Main.tfoo is total
Main> Main.wfoo is total
Main> Main.wbar is not covering due to call to function Main.with block in 1387
Main> Main.wbar is not covering due to call to function Main.with block in 1393
Main> Main.wbar1 is total
Main> Bye for now!

View File

@ -3,4 +3,4 @@ casetot.idr:12:1--13:1:main is not covering at:
12 main : IO ()
13 main = do
Calls non covering function Main.case block in 2114(619)
Calls non covering function Main.case block in 2145(622)

View File

@ -0,0 +1,33 @@
import Control.Linear.LIO
import Network.Socket
data SocketState = Ready | Bound | Listening | Open | Closed
data Socket : SocketState -> Type where
MkSocket : Socket.Data.Socket -> Socket st
newSocket : LinearIO io
=> (fam : SocketFamily)
-> (ty : SocketType)
-> (pnum : ProtocolNumber)
-> (success : (1 _ : Socket Ready) -> L io ())
-> (fail : SocketError -> L io ())
-> L io ()
newSocket fam ty pnum success fail
= do Right rawsock <- socket fam ty pnum
| Left err => fail err
success (MkSocket rawsock)
bind : LinearIO io =>
(1 _ : Socket Ready) ->
(addr : Maybe SocketAddress) ->
(port : Port) ->
L io {use=1} (Res Bool (\res => Socket (case res of
False => Closed
True => Bound)))
bind (MkSocket sock) addr port
= do ok <- Socket.bind sock addr port
if ok == 0
then pure1 (True # ?foo1)
else pure1 (False # ?foo2)

View File

@ -0,0 +1,17 @@
1/1: Building Network (Network.idr)
Main> 0 io : Type -> Type
sock : Socket
port : Int
addr : Maybe SocketAddress
ok : Int
-------------------------------------
foo1 : Socket Bound
Main> 0 io : Type -> Type
sock : Socket
port : Int
addr : Maybe SocketAddress
ok : Int
-------------------------------------
foo2 : Socket Closed
Main>
Bye for now!

View File

@ -0,0 +1,2 @@
:t foo1
:t foo2

View File

@ -0,0 +1,3 @@
$1 --no-banner Network.idr -p contrib -p network < input
rm -rf build

View File

@ -1,6 +1,6 @@
1/1: Building refprims (refprims.idr)
LOG 0: Name: Prelude.List.++
LOG 0: Type: (%pi Rig0 Implicit (Just a) %type (%pi Rig1 Explicit (Just xs) (Prelude.List a) (%pi RigW Explicit (Just {arg:6371}) (Prelude.List a) (Prelude.List a))))
LOG 0: Type: (%pi Rig0 Implicit (Just a) %type (%pi Rig1 Explicit (Just xs) (Prelude.List a) (%pi RigW Explicit (Just {arg:6310}) (Prelude.List a) (Prelude.List a))))
LOG 0: Name: Prelude.Strings.++
LOG 0: Type: (%pi Rig1 Explicit (Just x) String (%pi Rig1 Explicit (Just y) String String))
LOG 0: Resolved name: Prelude.Nat