Turn Validator into a proper monad transformer.

This commit is contained in:
Sventimir 2020-08-11 20:51:51 +02:00
parent 6389aa4099
commit 208fb6fe04
2 changed files with 140 additions and 66 deletions

View File

@ -0,0 +1,55 @@
module Control.Monad.Trans.Either
%default total
public export
record EitherT m a b where
constructor MkEitherT
runEitherT : m (Either a b)
export
Functor m => Functor (EitherT m a) where
map f (MkEitherT runEitherT) = MkEitherT (map (map f) runEitherT)
export
Monad m => Applicative (EitherT m a) where
pure = MkEitherT . pure . Right
(MkEitherT left) <*> (MkEitherT right) = MkEitherT $ do
l <- left
r <- right
pure (l <*> r)
export
Monad m => Monad (EitherT m a) where
join (MkEitherT runEitherT) = MkEitherT $ do
case !runEitherT of
Left l => pure (Left l)
Right (MkEitherT inner) => inner
export
eitherT : Monad m => (a -> m c) -> (b -> m c) -> EitherT m a b -> m c
eitherT f g (MkEitherT runEitherT) = case !runEitherT of
Left l => f l
Right r => g r
export
bimapEitherT : Functor m => (a -> c) -> (b -> d) -> EitherT m a b -> EitherT m c d
bimapEitherT f g (MkEitherT runEitherT) = MkEitherT (map m runEitherT)
where
m : Either a b -> Either c d
m (Left l) = Left (f l)
m (Right r) = Right (g r)
export
mapEitherT : (m (Either a b) -> n (Either c d)) -> EitherT m a b -> EitherT n c d
mapEitherT f (MkEitherT runEitherT) = MkEitherT $ f runEitherT
export
hoist : Applicative m => Either a b -> EitherT m a b
hoist e = MkEitherT $ pure e
export
fail : Applicative m => a -> EitherT m a b
fail = MkEitherT . pure . Left

View File

@ -10,7 +10,9 @@ module Control.Validation
-- about user input and constructing proofs that input is indeed valid or
-- failing early with a nice error message if it isn't.
import Control.Monad.Identity
import Control.Monad.Syntax
import Control.Monad.Trans.Either
import Data.Nat
import Data.Strings
import Data.Vect
@ -20,8 +22,8 @@ import Decidable.Equality
public export
Result : Type -> Type
Result = Either String
Result : (Type -> Type) -> Type -> Type
Result m = EitherT m String
||| Validators in this module come in two flavours: Structural Validators and
||| Property Validators. They are both wrappers around functions which take
@ -34,94 +36,111 @@ Result = Either String
|||
||| Property Validators try to prove that (usually already refined) input has
||| some property and return the proof if it does.
public export
data Validator : Type -> Type -> Type where
StructValidator : (a -> Result b) -> Validator a b
PropValidator : {0 a, b : Type} -> {0 p : b -> Type} -> {0 x : b} -> (a -> Result (p x)) -> Validator a (p x)
unwrap : Validator a b -> a -> Result b
unwrap (StructValidator f) = f
unwrap (PropValidator f) = f
export
Functor (Validator a) where
map f v = StructValidator (map f . unwrap v)
data ValidatorT : (Type -> Type) -> Type -> Type -> Type where
StructValidator : (a -> Result m b) -> ValidatorT m a b
PropValidator : {0 a, b : Type} -> {0 p : b -> Type} -> {0 x : b} -> (a -> Result m (p x)) -> ValidatorT m a (p x)
export
Applicative (Validator a) where
pure a = StructValidator (const $ pure a)
f <*> a = StructValidator (\x => unwrap f x <*> unwrap a x)
Validator : Type -> Type -> Type
Validator = ValidatorT Identity
export
Monad (Validator a) where
v >>= f = StructValidator $ \x => do
r <- unwrap v x
unwrap (f r) x
||| Run validation on given input, returning (Right refinedInput) if everything
||| is all right or (Left errorMessage) if it's not.
export
validate : Validator a b -> a -> Result b
validate (StructValidator v) = v
validate (PropValidator v) = v
validateT : ValidatorT m a b -> a -> Result m b
validateT (StructValidator v) = v
validateT (PropValidator v) = v
replaceError : String -> Result a -> Result a
replaceError e (Left _) = Left e
replaceError _ (Right x) = Right x
||| Run validation within the Identity monad and unwrap result immediately.
export
validate : Validator a b -> a -> Either String b
validate v = runIdentity . runEitherT . validateT v
||| Given a function from input to Either String output, make a structural
||| validator.
export
structValidator : (a -> Result m b) -> ValidatorT m a b
structValidator = StructValidator
||| Given a refined input and a decision procedure for a property, make a
||| validator checking whether input has that property. NOTE: the input is
||| required for type-checking only. It's user's responsibility to make sure
||| that supplied function actually uses it.
export
propValidator : {0 a, b : Type} -> {0 p : b -> Type} -> (0 x : b) -> (a -> Result m (p x)) -> ValidatorT m a (p x)
propValidator {p} x = PropValidator {p} {x}
export
Functor m => Functor (ValidatorT m a) where
map f v = StructValidator (map f . validateT v)
export
Monad m => Applicative (ValidatorT m a) where
pure a = StructValidator (const $ pure a)
f <*> a = StructValidator (\x => validateT f x <*> validateT a x)
export
Monad m => Monad (ValidatorT m a) where
v >>= f = StructValidator $ \x => do
r <- validateT v x
validateT (f r) x
replaceError : Monad m => String -> Result m a -> Result m a
replaceError e = bimapEitherT (const e) id
||| Replace validator's default error message.
export
withError : String -> Validator a b -> Validator a b
withError : Monad m => String -> ValidatorT m a b -> ValidatorT m a b
withError e (StructValidator f) = StructValidator (replaceError e . f)
withError e (PropValidator {p} {x} f) = PropValidator {p} {x} (replaceError e . f)
||| A validator which always fails with a given message.
export
fail : String -> Validator a b
fail s = StructValidator $ \_ => Left s
fail : Applicative m => String -> ValidatorT m a b
fail s = StructValidator $ \_ => fail s
infixl 2 >>>
||| Compose two validators so that the second validates the output of the first.
export
(>>>) : Validator a b -> Validator b c -> Validator a c
left >>> right = StructValidator (unwrap left >=> unwrap right)
(>>>) : Monad m => ValidatorT m a b -> ValidatorT m b c -> ValidatorT m a c
left >>> right = StructValidator (validateT left >=> validateT right)
Alternative (Validator a) where
left <|> right = StructValidator \x =>
case unwrap left x of
Right b => pure b
Left e => case unwrap right x of
Right b => pure b
Left e' => Left (e <+> " / " <+> e')
Monad m => Alternative (ValidatorT m a) where
left <|> right = StructValidator \x => MkEitherT $ do
case !(runEitherT $ validateT left x) of
(Right r) => pure $ Right r
(Left e) => case !(runEitherT $ validateT right x) of
(Right r) => pure $ Right r
(Left e') => pure $ Left (e <+> " / " <+> e')
||| Alter the input before validation using given function.
export
contramap : (a -> b) -> Validator b c -> Validator a c
contramap f v = StructValidator (unwrap v . f)
contramap : (a -> b) -> ValidatorT m b c -> ValidatorT m a c
contramap f v = StructValidator (validateT v . f)
||| Given a value x and a decision procedure for property p, validate if p x
||| Given a value x and a decision procedure for property p, validateT if p x
||| holds, returning a proof if it does. The procedure also has access to the
||| raw input in case it was helpful.
export
decide : {0 a, b : Type} -> String -> (x : b) -> {p : b -> Type} -> (a -> (x : b) -> Dec (p x)) -> Validator a (p x)
decide : Monad m => {0 a, b : Type} -> String -> (x : b) -> {p : b -> Type} -> (a -> (x : b) -> Dec (p x)) -> ValidatorT m a (p x)
decide {a} {b} msg x {p} f = PropValidator {p} {x} $ \a => case f a x of
Yes prf => Right prf
No _ => Left msg
Yes prf => pure prf
No _ => fail msg
||| Given a function converting a into Maybe b, build a Validator of a
||| converting it into b.
export
fromMaybe : (a -> String) -> (a -> Maybe b) -> Validator a b
fromMaybe : Monad m => (a -> String) -> (a -> Maybe b) -> ValidatorT m a b
fromMaybe e f = StructValidator \a => case f a of
Nothing => Left $ e a
Just b => Right b
Nothing => fail $ e a
Just b => pure b
||| Verify whether a String represents a natural number.
export
natural : Validator String Nat
natural : Monad m => ValidatorT m String Nat
natural = fromMaybe mkError parsePositive
where
mkError : String -> String
@ -129,7 +148,7 @@ natural = fromMaybe mkError parsePositive
||| Verify whether a String represents an Integer
export
integral : (Num a, Neg a) => Validator String a
integral : (Num a, Neg a, Monad m) => ValidatorT m String a
integral = fromMaybe mkError parseInteger
where
mkError : String -> String
@ -137,7 +156,7 @@ integral = fromMaybe mkError parseInteger
||| Verify that a string represents a decimal fraction.
export
double : Validator String Double
double : Monad m => ValidatorT m String Double
double = fromMaybe mkError parseDouble
where
mkError : String -> String
@ -146,30 +165,30 @@ double = fromMaybe mkError parseDouble
||| Verify whether a list has a desired length.
export
length : (l : Nat) -> Validator (List a) (Vect l a)
length : Monad m => (l : Nat) -> ValidatorT m (List a) (Vect l a)
length l = StructValidator (validateVector l)
where
validateVector : (l : Nat) -> List a -> Result (Vect l a)
validateVector Z [] = Right []
validateVector (S _) [] = Left "Missing list element."
validateVector Z (_ :: _) = Left "Excessive list element."
validateVector : (l : Nat) -> List a -> Result m (Vect l a)
validateVector Z [] = pure []
validateVector (S _) [] = fail "Missing list element."
validateVector Z (_ :: _) = fail "Excessive list element."
validateVector (S k) (x :: xs) = do
ys <- validateVector k xs
pure (x :: ys)
||| Verify that certain values are equal.
export
equal : DecEq a => (x, y : a) -> Validator z (x = y)
equal : (DecEq a, Monad m) => (x, y : a) -> ValidatorT m z (x = y)
equal x y = PropValidator {p = \z => fst z = snd z} {x = (x, y)} dec
where
dec : z -> Result (x = y)
dec : z -> Result m (x = y)
dec _ = case decEq x y of
Yes prf => Right prf
No _ => Left "Values are not equal."
Yes prf => pure prf
No _ => fail "Values are not equal."
||| Verify that a Nat is less than or equal to certain bound.
export
lteNat : {0 a : Type} -> (bound, n : Nat) -> Validator a (LTE n bound)
lteNat : Monad m => {0 a : Type} -> (bound, n : Nat) -> ValidatorT m a (LTE n bound)
lteNat {a} bound n = decide
(show n <+> " is not lower or equal to " <+> show bound)
{p = \x => LTE x bound}
@ -178,15 +197,15 @@ lteNat {a} bound n = decide
||| Verify that a Nat is greater than or equal to certain bound.
export
gteNat : {0 a : Type} -> (bound, n : Nat) -> Validator a (GTE n bound)
gteNat : Monad m => {0 a : Type} -> (bound, n : Nat) -> ValidatorT m a (GTE n bound)
gteNat {a} bound n = lteNat n bound
||| Verify that a Nat is strictly less than a certain bound.
export
ltNat : {0 a : Type} -> (bound, n : Nat) -> Validator a (LT n bound)
ltNat : Monad m => {0 a : Type} -> (bound, n : Nat) -> ValidatorT m a (LT n bound)
ltNat bound n = lteNat bound (S n)
||| Verify that a Nat is strictly greate than a certain bound.
export
gtNat : {0 a : Type} -> (bound, n : Nat) -> Validator a (GT n bound)
gtNat : Monad m => {0 a : Type} -> (bound, n : Nat) -> ValidatorT m a (GT n bound)
gtNat bound n = ltNat n bound