mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-12-24 20:23:11 +03:00
Simplify Fin
This commit is contained in:
parent
7d1ee9dd08
commit
2ae6e06565
@ -17,7 +17,7 @@ data Fin : (n : Nat) -> Type where
|
||||
FS : Fin k -> Fin (S k)
|
||||
|
||||
export
|
||||
implementation Uninhabited (Fin Z) where
|
||||
Uninhabited (Fin Z) where
|
||||
uninhabited FZ impossible
|
||||
uninhabited (FS f) impossible
|
||||
|
||||
@ -30,42 +30,33 @@ Uninhabited (FS k = FZ) where
|
||||
uninhabited Refl impossible
|
||||
|
||||
export
|
||||
FSInjective : (m : Fin k) -> (n : Fin k) -> FS m = FS n -> m = n
|
||||
FSInjective left _ Refl = Refl
|
||||
fsInjective : FS m = FS n -> m = n
|
||||
fsInjective Refl = Refl
|
||||
|
||||
export
|
||||
implementation Eq (Fin n) where
|
||||
Eq (Fin n) where
|
||||
(==) FZ FZ = True
|
||||
(==) (FS k) (FS k') = k == k'
|
||||
(==) _ _ = False
|
||||
|
||||
||| There are no elements of `Fin Z`
|
||||
export
|
||||
FinZAbsurd : Fin Z -> Void
|
||||
FinZAbsurd FZ impossible
|
||||
|
||||
export
|
||||
FinZElim : Fin Z -> a
|
||||
FinZElim x = void (FinZAbsurd x)
|
||||
|
||||
||| Convert a Fin to a Nat
|
||||
public export
|
||||
finToNat : Fin n -> Nat
|
||||
finToNat FZ = Z
|
||||
finToNat (FS k) = S (finToNat k)
|
||||
finToNat (FS k) = S $ finToNat k
|
||||
|
||||
||| `finToNat` is injective
|
||||
export
|
||||
finToNatInjective : (fm : Fin k) -> (fn : Fin k) -> (finToNat fm) = (finToNat fn) -> fm = fn
|
||||
finToNatInjective (FS m) FZ Refl impossible
|
||||
finToNatInjective FZ (FS n) Refl impossible
|
||||
finToNatInjective FZ FZ _ = Refl
|
||||
finToNatInjective (FS _) FZ Refl impossible
|
||||
finToNatInjective FZ (FS _) Refl impossible
|
||||
finToNatInjective (FS m) (FS n) prf =
|
||||
cong FS (finToNatInjective m n (succInjective (finToNat m) (finToNat n) prf))
|
||||
finToNatInjective FZ FZ Refl = Refl
|
||||
cong FS $ finToNatInjective m n $ succInjective (finToNat m) (finToNat n) prf
|
||||
|
||||
export
|
||||
implementation Cast (Fin n) Nat where
|
||||
cast x = finToNat x
|
||||
Cast (Fin n) Nat where
|
||||
cast = finToNat
|
||||
|
||||
||| Convert a Fin to an Integer
|
||||
public export
|
||||
@ -74,37 +65,37 @@ finToInteger FZ = 0
|
||||
finToInteger (FS k) = 1 + finToInteger k
|
||||
|
||||
export
|
||||
implementation Cast (Fin n) Integer where
|
||||
cast x = finToInteger x
|
||||
Cast (Fin n) Integer where
|
||||
cast = finToInteger
|
||||
|
||||
||| Weaken the bound on a Fin by 1
|
||||
public export
|
||||
weaken : Fin n -> Fin (S n)
|
||||
weaken FZ = FZ
|
||||
weaken (FS k) = FS (weaken k)
|
||||
weaken (FS k) = FS $ weaken k
|
||||
|
||||
||| Weaken the bound on a Fin by some amount
|
||||
public export
|
||||
weakenN : (n : Nat) -> Fin m -> Fin (m + n)
|
||||
weakenN n FZ = FZ
|
||||
weakenN n (FS f) = FS (weakenN n f)
|
||||
weakenN n (FS f) = FS $ weakenN n f
|
||||
|
||||
||| Weaken the bound on a Fin using a constructive comparison
|
||||
public export
|
||||
weakenLTE : Fin n -> LTE n m -> Fin m
|
||||
weakenLTE FZ LTEZero impossible
|
||||
weakenLTE (FS _) LTEZero impossible
|
||||
weakenLTE FZ (LTESucc y) = FZ
|
||||
weakenLTE FZ (LTESucc _) = FZ
|
||||
weakenLTE (FS x) (LTESucc y) = FS $ weakenLTE x y
|
||||
|
||||
||| Attempt to tighten the bound on a Fin.
|
||||
||| Return `Left` if the bound could not be tightened, or `Right` if it could.
|
||||
export
|
||||
strengthen : {n : _} -> Fin (S n) -> Either (Fin (S n)) (Fin n)
|
||||
strengthen {n = S k} FZ = Right FZ
|
||||
strengthen {n = S k} (FS i) with (strengthen i)
|
||||
strengthen (FS i) | Left x = Left (FS x)
|
||||
strengthen (FS i) | Right x = Right (FS x)
|
||||
strengthen {n = S _} FZ = Right FZ
|
||||
strengthen {n = S _} (FS i) with (strengthen i)
|
||||
strengthen (FS _) | Left x = Left $ FS x
|
||||
strengthen (FS _) | Right x = Right $ FS x
|
||||
strengthen f = Left f
|
||||
|
||||
||| Add some natural number to a Fin, extending the bound accordingly
|
||||
@ -113,7 +104,7 @@ strengthen f = Left f
|
||||
public export
|
||||
shift : (m : Nat) -> Fin n -> Fin (m + n)
|
||||
shift Z f = f
|
||||
shift {n=n} (S m) f = FS {k = (m + n)} (shift m f)
|
||||
shift (S m) f = FS $ shift m f
|
||||
|
||||
||| The largest element of some Fin type
|
||||
public export
|
||||
@ -121,22 +112,16 @@ last : {n : _} -> Fin (S n)
|
||||
last {n=Z} = FZ
|
||||
last {n=S _} = FS last
|
||||
|
||||
public export
|
||||
FSinjective : {f : Fin n} -> {f' : Fin n} -> (FS f = FS f') -> f = f'
|
||||
FSinjective Refl = Refl
|
||||
|
||||
export
|
||||
implementation Ord (Fin n) where
|
||||
Ord (Fin n) where
|
||||
compare FZ FZ = EQ
|
||||
compare FZ (FS _) = LT
|
||||
compare (FS _) FZ = GT
|
||||
compare (FS x) (FS y) = compare x y
|
||||
|
||||
|
||||
-- Construct a Fin from an integer literal which must fit in the given Fin
|
||||
public export
|
||||
natToFin : Nat -> (n : Nat) -> Maybe (Fin n)
|
||||
natToFin Z (S j) = Just FZ
|
||||
natToFin Z (S _) = Just FZ
|
||||
natToFin (S k) (S j)
|
||||
= case natToFin k j of
|
||||
Just k' => Just (FS k')
|
||||
@ -176,15 +161,11 @@ restrict n val = let val' = assert_total (abs (mod val (cast (S n)))) in
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
export
|
||||
FZNotFS : {f : Fin n} -> FZ {k = n} = FS f -> Void
|
||||
FZNotFS Refl impossible
|
||||
|
||||
export
|
||||
implementation DecEq (Fin n) where
|
||||
DecEq (Fin n) where
|
||||
decEq FZ FZ = Yes Refl
|
||||
decEq FZ (FS f) = No FZNotFS
|
||||
decEq (FS f) FZ = No $ negEqSym FZNotFS
|
||||
decEq FZ (FS f) = No absurd
|
||||
decEq (FS f) FZ = No absurd
|
||||
decEq (FS f) (FS f')
|
||||
= case decEq f f' of
|
||||
Yes p => Yes $ cong FS p
|
||||
No p => No $ \h => p $ FSinjective {f = f} {f' = f'} h
|
||||
No p => No $ p . fsInjective
|
||||
|
Loading…
Reference in New Issue
Block a user