Port over some contrib stuff

I didn't add any export labels because none of this is actually useful
for anything, but the proofs are cool.
This commit is contained in:
Nick Drozd 2020-06-11 17:01:52 -05:00
parent 9f325945b9
commit 3b0496b8ab
5 changed files with 331 additions and 0 deletions

View File

@ -0,0 +1,160 @@
module Data.Logic.Propositional
%default total
-- Idris uses intuitionistic logic, so it does not validate the
-- principle of excluded middle (PEM) or similar theorems of classical
-- logic. But it does validate certain relations among these
-- propositions, and that's what's in this file.
||| The principle of excluded middle
PEM : Type -> Type
PEM p = Either p (Not p)
||| Double negation elimination
DNE : Type -> Type
DNE p = Not $ Not p -> p
||| The consensus theorem (at least, the interesting part)
Consensus : Type -> Type -> Type -> Type
Consensus p q r = (q, r) -> Either (p, q) (Not p, r)
||| Peirce's law
Peirce : Type -> Type -> Type
Peirce p q = ((p -> q) -> p) -> p
||| Not sure if this one has a name, so call it Frege's law
Frege : Type -> Type -> Type -> Type
Frege p q r = (p -> r) -> (q -> r) -> ((p -> q) -> q) -> r
||| The converse of contraposition: (p -> q) -> Not q -> Not p
Transposition : Type -> Type -> Type
Transposition p q = (Not q -> Not p) -> p -> q
||| This isn't a good name.
Switch : Type -> Type
Switch p = (Not p -> p) -> p
-- PEM and the others can't be proved outright, but it is possible to
-- prove the double negations (DN) of all of them.
||| The double negation of a proposition
DN : Type -> Type
DN p = Not $ Not p
pemDN : DN $ PEM p
pemDN f = f $ Right $ \x => f $ Left x
dneDN : DN $ DNE p
dneDN f = f $ \g => void $ g $ \x => f $ \_ => x
consensusDN : DN $ Consensus p q r
consensusDN f = f $ \(y, z) => Right (\x => f $ \(_, _) => Left (x, y), z)
peirceDN : DN $ Peirce p q
peirceDN f = f $ \g => g $ \x => void $ f $ \_ => x
fregeDN : DN $ Frege p q r
fregeDN f = f $ \g, h, i => h $ i $ \x => void $ f $ \_, _, _ => g x
transpositionDN : DN $ Transposition p q
transpositionDN f = f $ \g, x => void $ g (\y => f $ \_, _ => y) x
switchDN : DN $ Switch p
switchDN f = f $ \g => g $ \x => f $ \_ => x
-- It's easy to prove all these theorems assuming PEM.
dnePEM : PEM p -> DNE p
dnePEM (Left l) _ = l
dnePEM (Right r) f = void $ f r
consensusPEM : PEM p -> Consensus p q r
consensusPEM (Left l) (y, _) = Left (l, y)
consensusPEM (Right r) (_, z) = Right (r, z)
peircePEM : PEM p -> Peirce p q
peircePEM (Left l) _ = l
peircePEM (Right r) f = f $ \x => void $ r x
fregePEM : PEM p -> Frege p q r
fregePEM (Left l) f _ _ = f l
fregePEM (Right r) _ g h = g $ h $ \x => void $ r x
transpositionPEM : PEM p -> Transposition q p
transpositionPEM (Left l) _ _ = l
transpositionPEM (Right r) f x = void $ f r x
switchPEM : PEM p -> Switch p
switchPEM (Left l) _ = l
switchPEM (Right r) f = f r
-- It's trivial to prove these theorems assuming double negation
-- elimination (DNE), since their double negations can all be proved.
||| Eliminate double negations
EDN : DN p -> DNE p -> p
EDN f g = g f
pemDNE : DNE $ PEM p -> PEM p
pemDNE = EDN pemDN
-- It's possible to prove the theorems assuming Peirce's law, but some
-- thought must be given to choosing the right instances. Peirce's law
-- is therefore weaker than PEM on an instance-by-instance basis, but
-- all the instances together are equivalent.
pemPeirce : Peirce (PEM p) Void -> PEM p
pemPeirce f = f $ \g => Right $ \x => g $ Left x
dnePeirce : Peirce p Void -> DNE p
dnePeirce f g = f $ \h => void $ g h
consensusPeirce : Peirce (Consensus p q r) Void -> Consensus p q r
consensusPeirce f (y, z) =
f (\g, (_, _) => Right (\x => g (\_ => Left (x, y)), z)) (y, z)
fregePeirce : Peirce (Frege p q r) Void -> Frege p q r
fregePeirce f g h i =
f (\j, _, _, _ => h $ i $ \x => void $ j $ \_, _, _ => g x) g h i
transpositionPeirce : Peirce (Transposition p q) Void -> Transposition p q
transpositionPeirce f g x =
f (\h, _, _ => void $ g (\y => h $ \_, _ => y) x) (\j, _ => g j x) x
-- There are a variety of single axioms sufficient for deriving all of
-- classical logic. The earliest of these is known as Nicod's axiom,
-- but it is written using only nand operators and doesn't lend itself
-- to Idris's type system. Meredith's axiom, on the other hand, is
-- written using implication and negation.
||| Meredith's axiom, sufficient for deriving all of classical logic
Meredith : (p, q, r, s, t : Type) -> Type
Meredith p q r s t =
((((p -> q) -> Not r -> Not s) -> r) -> t) -> (t -> p) -> s -> p
-- The Meredith axiom implies all of classical logic, and so in
-- particular it implies PEM, and therefore cannot be proved in
-- intuitionistic logic. As usual, however, its double negation can be
-- proved.
meredithDN : DN $ Meredith p q r s t
meredithDN f =
f $ \g, h, x =>
h $ g $ \i =>
void $ i
(\y => void $ f $ \_, _, _ => y)
(\z => f $ \_, _, _ => h $ g $ \_ => z)
x
-- Meredith can be proved assuming PEM, since the type system itself
-- takes care of the rest.
meredithPEM : PEM p -> Meredith p q r s t
meredithPEM (Left l) _ _ _ = l
meredithPEM (Right r) f g x =
g $ f $ \h =>
void $ h
(\y => void $ r y)
(\z => r $ g $ f (\_ => z))
x

View File

@ -0,0 +1,58 @@
||| Properties of Ackermann functions
module Data.Nat.Ack
%default total
-- Primitive recursive functions are functions that can be calculated
-- by programs that don't use unbounded loops. Almost all common
-- mathematical functions are primitive recursive.
-- Uncomputable functions are functions that can't be calculated by
-- any programs at all. One example is the Busy Beaver function:
-- BB(k) = the maximum number of steps that can be executed by a
-- halting Turing machine with k states.
-- The values of the Busy Beaver function are unimaginably large for
-- any but the smallest inputs.
-- The Ackermann function is the most well-known example of a total
-- computable function that is not primitive recursive, i.e. a general
-- recursive function. It grows strictly faster than any primitive
-- recursive function, but also strictly slower than a function like
-- the Busy Beaver.
-- There are many variations of the Ackermann function. Here is one
-- common definition
-- (see https://sites.google.com/site/pointlesslargenumberstuff/home/2/ackermann)
-- that uses nested recursion:
ackRec : Nat -> Nat -> Nat
-- Base rule
ackRec Z m = S m
-- Prime rule
ackRec (S k) Z = ackRec k 1
-- Catastrophic rule
ackRec (S k) (S j) = ackRec k $ ackRec (S k) j
-- The so-called "base rule" and "prime rule" work together to ensure
-- termination. Happily, the Idris totality checker has no issues.
-- An unusual "repeating" defintion of the function is given in the
-- book The Little Typer:
ackRep : Nat -> Nat -> Nat
ackRep Z = (+) 1
ackRep (S k) = repeat (ackRep k)
where
repeat : (Nat -> Nat) -> Nat -> Nat
repeat f Z = f 1
repeat f (S k) = f (repeat f k)
-- These two definitions don't look like they define the same
-- function, but they do:
ackRepRec : (n, m : Nat) -> ackRep n m = ackRec n m
ackRepRec Z _ = Refl
ackRepRec (S k) Z = ackRepRec k 1
ackRepRec (S k) (S j) =
rewrite sym $ ackRepRec (S k) j in
ackRepRec k $ ackRep (S k) j

View File

@ -0,0 +1,56 @@
||| Properties of factorial functions
module Data.Nat.Fact
import Data.Nat
%default total
||| Recursive definition of factorial.
factRec : Nat -> Nat
factRec Z = 1
factRec (S k) = (S k) * factRec k
||| Tail-recursive accumulator for factItr.
factAcc : Nat -> Nat -> Nat
factAcc Z acc = acc
factAcc (S k) acc = factAcc k $ (S k) * acc
||| Iterative definition of factorial.
factItr : Nat -> Nat
factItr n = factAcc n 1
----------------------------------------
||| Multiplicand-shuffling lemma.
multShuffle : (a, b, c : Nat) -> a * (b * c) = b * (a * c)
multShuffle a b c =
rewrite multAssociative a b c in
rewrite multCommutative a b in
sym $ multAssociative b a c
||| Multiplication of the accumulator.
factAccMult : (a, b, c : Nat) ->
a * factAcc b c = factAcc b (a * c)
factAccMult _ Z _ = Refl
factAccMult a (S k) c =
rewrite factAccMult a k (S k * c) in
rewrite multShuffle a (S k) c in
Refl
||| Addition of accumulators.
factAccPlus : (a, b, c : Nat) ->
factAcc a b + factAcc a c = factAcc a (b + c)
factAccPlus Z _ _ = Refl
factAccPlus (S k) b c =
rewrite factAccPlus k (S k * b) (S k * c) in
rewrite sym $ multDistributesOverPlusRight (S k) b c in
Refl
||| The recursive and iterative definitions are the equivalent.
factRecItr : (n : Nat) -> factRec n = factItr n
factRecItr Z = Refl
factRecItr (S k) =
rewrite factRecItr k in
rewrite factAccMult k k 1 in
rewrite multOneRightNeutral k in
factAccPlus k 1 k

View File

@ -0,0 +1,50 @@
||| Properties of Fibonacci functions
module Data.Nat.Fib
import Data.Nat
%default total
||| Recursive definition of Fibonacci.
fibRec : Nat -> Nat
fibRec Z = Z
fibRec (S Z) = S Z
fibRec (S (S k)) = fibRec (S k) + fibRec k
||| Accumulator for fibItr.
fibAcc : Nat -> Nat -> Nat -> Nat
fibAcc Z a _ = a
fibAcc (S k) a b = fibAcc k b (a + b)
||| Iterative definition of Fibonacci.
fibItr : Nat -> Nat
fibItr n = fibAcc n 0 1
||| Addend shuffling lemma.
plusLemma : (a, b, c, d : Nat) -> (a + b) + (c + d) = (a + c) + (b + d)
plusLemma a b c d =
rewrite sym $ plusAssociative a b (c + d) in
rewrite plusAssociative b c d in
rewrite plusCommutative b c in
rewrite sym $ plusAssociative c b d in
plusAssociative a c (b + d)
||| Helper lemma for fibacc.
fibAdd : (n, a, b, c, d : Nat) ->
fibAcc n a b + fibAcc n c d = fibAcc n (a + c) (b + d)
fibAdd Z _ _ _ _ = Refl
fibAdd (S Z) _ _ _ _ = Refl
fibAdd (S (S k)) a b c d =
rewrite fibAdd k (a + b) (b + (a + b)) (c + d) (d + (c + d)) in
rewrite plusLemma b (a + b) d (c + d) in
rewrite plusLemma a b c d in
Refl
||| Iterative and recursive Fibonacci definitions are equivalent.
fibEq : (n : Nat) -> fibRec n = fibItr n
fibEq Z = Refl
fibEq (S Z) = Refl
fibEq (S (S k)) =
rewrite fibEq k in
rewrite fibEq (S k) in
fibAdd k 1 1 0 1

View File

@ -11,8 +11,15 @@ modules = Control.Delayed,
Data.List.Palindrome,
Data.Fin.Extra,
Data.Logic.Propositional,
Data.Nat.Ack,
Data.Nat.Equational,
Data.Nat.Fact,
Data.Nat.Factor,
Data.Nat.Fib,
Data.SortedMap,
Data.SortedSet,
Data.String.Extra,