[ fix #72 ] remove the broken modules (#3319)

* [ fix #72 ] remove the broken modules

People are still hitting the same issueT
There has been no movement towards fixing it
It is IMO unfixable

Let's drop it.

* [ fix #72 ] Remove dependencies of Control.Algebra

Follow-up to the commit by gallais, this removes the contrib libraries
which were using `Control.Algebra`.

* [ fix #72 ] Record changes in CHANGELOG_NEXT

* [ lint ] Move Algebra changes to existing header

---------

Co-authored-by: Thomas E. Hansen <teh6@st-andrews.ac.uk>
This commit is contained in:
G. Allais 2024-06-17 13:45:16 +01:00 committed by GitHub
parent 02e5468551
commit 3f985bcefa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 17 additions and 622 deletions

View File

@ -199,6 +199,23 @@ This CHANGELOG describes the merged but unreleased changes. Please see [CHANGELO
* Function `invFin` from `Data.Fin.Extra` was deprecated in favour of * Function `invFin` from `Data.Fin.Extra` was deprecated in favour of
`Data.Fin.complement` from `base`. `Data.Fin.complement` from `base`.
* The `Control.Algebra` library from `contrib` has been removed due to being
broken, unfixed for years, and on several independent occasions causing
confusion with people picking up Idris and trying to use it.
- Detailed discussion can be found in
[Idris2#72](https://github.com/idris-lang/Idris2/issues/72).
- For reasoning about algebraic structures and proofs, please see
[Frex](https://github.com/frex-project/idris-frex/) and
[idris2-algebra](https://github.com/stefan-hoeck/idris2-algebra/).
* Since they depend on `Control.Algebra`, the following `contrib` libraries have
also been removed:
- `Control/Monad/Algebra.idr`
- `Data/Bool/Algebra.idr`
- `Data/List/Algebra.idr`
- `Data/Morphisms/Algebra.idr`
- `Data/Nat/Algebra.idr`
#### Network #### Network
* Add a missing function parameter (the flag) in the C implementation of `idrnet_recv_bytes` * Add a missing function parameter (the flag) in the C implementation of `idrnet_recv_bytes`

View File

@ -1,154 +0,0 @@
module Control.Algebra
export infixl 6 <->
export infixl 7 <.>
public export
interface Semigroup ty => SemigroupV ty where
semigroupOpIsAssociative : (l, c, r : ty) ->
l <+> (c <+> r) = (l <+> c) <+> r
public export
interface (Monoid ty, SemigroupV ty) => MonoidV ty where
monoidNeutralIsNeutralL : (l : ty) -> l <+> neutral {ty} = l
monoidNeutralIsNeutralR : (r : ty) -> neutral {ty} <+> r = r
||| Sets equipped with a single binary operation that is associative,
||| along with a neutral element for that binary operation and
||| inverses for all elements. Satisfies the following laws:
|||
||| + Associativity of `<+>`:
||| forall a b c, a <+> (b <+> c) == (a <+> b) <+> c
||| + Neutral for `<+>`:
||| forall a, a <+> neutral == a
||| forall a, neutral <+> a == a
||| + Inverse for `<+>`:
||| forall a, a <+> inverse a == neutral
||| forall a, inverse a <+> a == neutral
public export
interface MonoidV ty => Group ty where
inverse : ty -> ty
groupInverseIsInverseR : (r : ty) -> inverse r <+> r = neutral {ty}
(<->) : Group ty => ty -> ty -> ty
(<->) left right = left <+> (inverse right)
||| Sets equipped with a single binary operation that is associative
||| and commutative, along with a neutral element for that binary
||| operation and inverses for all elements. Satisfies the following
||| laws:
|||
||| + Associativity of `<+>`:
||| forall a b c, a <+> (b <+> c) == (a <+> b) <+> c
||| + Commutativity of `<+>`:
||| forall a b, a <+> b == b <+> a
||| + Neutral for `<+>`:
||| forall a, a <+> neutral == a
||| forall a, neutral <+> a == a
||| + Inverse for `<+>`:
||| forall a, a <+> inverse a == neutral
||| forall a, inverse a <+> a == neutral
public export
interface Group ty => AbelianGroup ty where
groupOpIsCommutative : (l, r : ty) -> l <+> r = r <+> l
||| A homomorphism is a mapping that preserves group structure.
public export
interface (Group a, Group b) => GroupHomomorphism a b where
to : a -> b
toGroup : (x, y : a) ->
to (x <+> y) = (to x) <+> (to y)
||| Sets equipped with two binary operations, one associative and
||| commutative supplied with a neutral element, and the other
||| associative, with distributivity laws relating the two operations.
||| Satisfies the following laws:
|||
||| + Associativity of `<+>`:
||| forall a b c, a <+> (b <+> c) == (a <+> b) <+> c
||| + Commutativity of `<+>`:
||| forall a b, a <+> b == b <+> a
||| + Neutral for `<+>`:
||| forall a, a <+> neutral == a
||| forall a, neutral <+> a == a
||| + Inverse for `<+>`:
||| forall a, a <+> inverse a == neutral
||| forall a, inverse a <+> a == neutral
||| + Associativity of `<.>`:
||| forall a b c, a <.> (b <.> c) == (a <.> b) <.> c
||| + Distributivity of `<.>` and `<+>`:
||| forall a b c, a <.> (b <+> c) == (a <.> b) <+> (a <.> c)
||| forall a b c, (a <+> b) <.> c == (a <.> c) <+> (b <.> c)
public export
interface Group ty => Ring ty where
(<.>) : ty -> ty -> ty
ringOpIsAssociative : (l, c, r : ty) ->
l <.> (c <.> r) = (l <.> c) <.> r
ringOpIsDistributiveL : (l, c, r : ty) ->
l <.> (c <+> r) = (l <.> c) <+> (l <.> r)
ringOpIsDistributiveR : (l, c, r : ty) ->
(l <+> c) <.> r = (l <.> r) <+> (c <.> r)
||| Sets equipped with two binary operations, one associative and
||| commutative supplied with a neutral element, and the other
||| associative supplied with a neutral element, with distributivity
||| laws relating the two operations. Satisfies the following laws:
|||
||| + Associativity of `<+>`:
||| forall a b c, a <+> (b <+> c) == (a <+> b) <+> c
||| + Commutativity of `<+>`:
||| forall a b, a <+> b == b <+> a
||| + Neutral for `<+>`:
||| forall a, a <+> neutral == a
||| forall a, neutral <+> a == a
||| + Inverse for `<+>`:
||| forall a, a <+> inverse a == neutral
||| forall a, inverse a <+> a == neutral
||| + Associativity of `<.>`:
||| forall a b c, a <.> (b <.> c) == (a <.> b) <.> c
||| + Neutral for `<.>`:
||| forall a, a <.> unity == a
||| forall a, unity <.> a == a
||| + Distributivity of `<.>` and `<+>`:
||| forall a b c, a <.> (b <+> c) == (a <.> b) <+> (a <.> c)
||| forall a b c, (a <+> b) <.> c == (a <.> c) <+> (b <.> c)
public export
interface Ring ty => RingWithUnity ty where
unity : ty
unityIsRingIdL : (l : ty) -> l <.> unity = l
unityIsRingIdR : (r : ty) -> unity <.> r = r
||| Sets equipped with two binary operations both associative,
||| commutative and possessing a neutral element and distributivity
||| laws relating the two operations. All elements except the additive
||| identity should have a multiplicative inverse. Should (but may
||| not) satisfy the following laws:
|||
||| + Associativity of `<+>`:
||| forall a b c, a <+> (b <+> c) == (a <+> b) <+> c
||| + Commutativity of `<+>`:
||| forall a b, a <+> b == b <+> a
||| + Neutral for `<+>`:
||| forall a, a <+> neutral == a
||| forall a, neutral <+> a == a
||| + Inverse for `<+>`:
||| forall a, a <+> inverse a == neutral
||| forall a, inverse a <+> a == neutral
||| + Associativity of `<.>`:
||| forall a b c, a <.> (b <.> c) == (a <.> b) <.> c
||| + Unity for `<.>`:
||| forall a, a <.> unity == a
||| forall a, unity <.> a == a
||| + InverseM of `<.>`, except for neutral
||| forall a /= neutral, a <.> inverseM a == unity
||| forall a /= neutral, inverseM a <.> a == unity
||| + Distributivity of `<.>` and `<+>`:
||| forall a b c, a <.> (b <+> c) == (a <.> b) <+> (a <.> c)
||| forall a b c, (a <+> b) <.> c == (a <.> c) <+> (b <.> c)
public export
interface RingWithUnity ty => Field ty where
inverseM : (x : ty) -> Not (x = neutral {ty}) -> ty

View File

@ -1,22 +0,0 @@
module Control.Algebra.Implementations
import Control.Algebra
-- This file is for algebra implementations with nowhere else to go.
%default total
-- Functions ---------------------------
Semigroup (ty -> ty) where
(<+>) = (.)
SemigroupV (ty -> ty) where
semigroupOpIsAssociative _ _ _ = Refl
Monoid (ty -> ty) where
neutral = id
MonoidV (ty -> ty) where
monoidNeutralIsNeutralL _ = Refl
monoidNeutralIsNeutralR _ = Refl

View File

@ -1,290 +0,0 @@
module Control.Algebra.Laws
import Control.Algebra
%default total
-- Monoids
||| Inverses are unique.
public export
uniqueInverse : MonoidV ty => (x, y, z : ty) ->
y <+> x = neutral {ty} -> x <+> z = neutral {ty} -> y = z
uniqueInverse x y z p q =
rewrite sym $ monoidNeutralIsNeutralL y in
rewrite sym q in
rewrite semigroupOpIsAssociative y x z in
rewrite p in
rewrite monoidNeutralIsNeutralR z in
Refl
-- Groups
||| Only identity is self-squaring.
public export
selfSquareId : Group ty => (x : ty) ->
x <+> x = x -> x = neutral {ty}
selfSquareId x p =
rewrite sym $ monoidNeutralIsNeutralR x in
rewrite sym $ groupInverseIsInverseR x in
rewrite sym $ semigroupOpIsAssociative (inverse x) x x in
rewrite p in
Refl
||| Inverse elements commute.
public export
inverseCommute : Group ty => (x, y : ty) ->
y <+> x = neutral {ty} -> x <+> y = neutral {ty}
inverseCommute x y p = selfSquareId (x <+> y) prop where
prop : (x <+> y) <+> (x <+> y) = x <+> y
prop =
rewrite sym $ semigroupOpIsAssociative x y (x <+> y) in
rewrite semigroupOpIsAssociative y x y in
rewrite p in
rewrite monoidNeutralIsNeutralR y in
Refl
||| Every element has a right inverse.
public export
groupInverseIsInverseL : Group ty => (x : ty) ->
x <+> inverse x = neutral {ty}
groupInverseIsInverseL x =
inverseCommute x (inverse x) (groupInverseIsInverseR x)
||| -(-x) = x
public export
inverseSquaredIsIdentity : Group ty => (x : ty) ->
inverse (inverse x) = x
inverseSquaredIsIdentity {ty} x =
uniqueInverse
(inverse x)
(inverse $ inverse x)
x
(groupInverseIsInverseR $ inverse x)
(groupInverseIsInverseR x)
||| If every square in a group is identity, the group is commutative.
public export
squareIdCommutative : Group ty => (x, y : ty) ->
((a : ty) -> a <+> a = neutral {ty}) ->
x <+> y = y <+> x
squareIdCommutative x y p =
uniqueInverse (x <+> y) (x <+> y) (y <+> x) (p (x <+> y)) prop where
prop : (x <+> y) <+> (y <+> x) = neutral {ty}
prop =
rewrite sym $ semigroupOpIsAssociative x y (y <+> x) in
rewrite semigroupOpIsAssociative y y x in
rewrite p y in
rewrite monoidNeutralIsNeutralR x in
p x
||| -0 = 0
public export
inverseNeutralIsNeutral : Group ty =>
inverse (neutral {ty}) = neutral {ty}
inverseNeutralIsNeutral {ty} =
rewrite sym $ cong inverse (groupInverseIsInverseL (neutral {ty})) in
rewrite monoidNeutralIsNeutralR $ inverse (neutral {ty}) in
inverseSquaredIsIdentity (neutral {ty})
-- ||| -(x + y) = -y + -x
-- public export
-- inverseOfSum : Group ty => (l, r : ty) ->
-- inverse (l <+> r) = inverse r <+> inverse l
-- inverseOfSum {ty} l r =
-- -- expand
-- rewrite sym $ monoidNeutralIsNeutralR $ inverse $ l <+> r in
-- rewrite sym $ groupInverseIsInverseR r in
-- rewrite sym $ monoidNeutralIsNeutralL $ inverse r in
-- rewrite sym $ groupInverseIsInverseR l in
-- -- shuffle
-- rewrite semigroupOpIsAssociative (inverse r) (inverse l) l in
-- rewrite sym $ semigroupOpIsAssociative (inverse r <+> inverse l) l r in
-- rewrite sym $ semigroupOpIsAssociative (inverse r <+> inverse l) (l <+> r) (inverse $ l <+> r) in
-- -- contract
-- rewrite sym $ monoidNeutralIsNeutralL $ inverse l in
-- rewrite groupInverseIsInverseL $ l <+> r in
-- rewrite sym $ semigroupOpIsAssociative (inverse r <+> (inverse l <+> neutral)) l (inverse l <+> neutral) in
-- rewrite semigroupOpIsAssociative l (inverse l) neutral in
-- rewrite groupInverseIsInverseL l in
-- rewrite monoidNeutralIsNeutralL $ the ty neutral in
-- Refl
||| y = z if x + y = x + z
public export
cancelLeft : Group ty => (x, y, z : ty) ->
x <+> y = x <+> z -> y = z
cancelLeft x y z p =
rewrite sym $ monoidNeutralIsNeutralR y in
rewrite sym $ groupInverseIsInverseR x in
rewrite sym $ semigroupOpIsAssociative (inverse x) x y in
rewrite p in
rewrite semigroupOpIsAssociative (inverse x) x z in
rewrite groupInverseIsInverseR x in
monoidNeutralIsNeutralR z
||| y = z if y + x = z + x.
public export
cancelRight : Group ty => (x, y, z : ty) ->
y <+> x = z <+> x -> y = z
cancelRight x y z p =
rewrite sym $ monoidNeutralIsNeutralL y in
rewrite sym $ groupInverseIsInverseL x in
rewrite semigroupOpIsAssociative y x (inverse x) in
rewrite p in
rewrite sym $ semigroupOpIsAssociative z x (inverse x) in
rewrite groupInverseIsInverseL x in
monoidNeutralIsNeutralL z
||| ab = 0 -> a = b^-1
public export
neutralProductInverseR : Group ty => (a, b : ty) ->
a <+> b = neutral {ty} -> a = inverse b
neutralProductInverseR a b prf =
cancelRight b a (inverse b) $
trans prf $ sym $ groupInverseIsInverseR b
||| ab = 0 -> a^-1 = b
public export
neutralProductInverseL : Group ty => (a, b : ty) ->
a <+> b = neutral {ty} -> inverse a = b
neutralProductInverseL a b prf =
cancelLeft a (inverse a) b $
trans (groupInverseIsInverseL a) $ sym prf
||| For any a and b, ax = b and ya = b have solutions.
public export
latinSquareProperty : Group ty => (a, b : ty) ->
((x : ty ** a <+> x = b),
(y : ty ** y <+> a = b))
latinSquareProperty a b =
((((inverse a) <+> b) **
rewrite semigroupOpIsAssociative a (inverse a) b in
rewrite groupInverseIsInverseL a in
monoidNeutralIsNeutralR b),
(b <+> (inverse a) **
rewrite sym $ semigroupOpIsAssociative b (inverse a) a in
rewrite groupInverseIsInverseR a in
monoidNeutralIsNeutralL b))
||| For any a, b, x, the solution to ax = b is unique.
public export
uniqueSolutionR : Group ty => (a, b, x, y : ty) ->
a <+> x = b -> a <+> y = b -> x = y
uniqueSolutionR a b x y p q = cancelLeft a x y $ trans p (sym q)
||| For any a, b, y, the solution to ya = b is unique.
public export
uniqueSolutionL : Group t => (a, b, x, y : t) ->
x <+> a = b -> y <+> a = b -> x = y
uniqueSolutionL a b x y p q = cancelRight a x y $ trans p (sym q)
-- ||| -(x + y) = -x + -y
-- public export
-- inverseDistributesOverGroupOp : AbelianGroup ty => (l, r : ty) ->
-- inverse (l <+> r) = inverse l <+> inverse r
-- inverseDistributesOverGroupOp l r =
-- rewrite groupOpIsCommutative (inverse l) (inverse r) in
-- inverseOfSum l r
||| Homomorphism preserves neutral.
public export
homoNeutral : GroupHomomorphism a b =>
to (neutral {ty=a}) = neutral {ty=b}
homoNeutral =
selfSquareId (to neutral) $
trans (sym $ toGroup neutral neutral) $
cong to $ monoidNeutralIsNeutralL neutral
||| Homomorphism preserves inverses.
public export
homoInverse : GroupHomomorphism a b => (x : a) ->
the b (to $ inverse x) = the b (inverse $ to x)
homoInverse x =
cancelRight (to x) (to $ inverse x) (inverse $ to x) $
trans (sym $ toGroup (inverse x) x) $
trans (cong to $ groupInverseIsInverseR x) $
trans homoNeutral $
sym $ groupInverseIsInverseR (to x)
-- Rings
||| 0x = x
public export
multNeutralAbsorbingL : Ring ty => (r : ty) ->
neutral {ty} <.> r = neutral {ty}
multNeutralAbsorbingL {ty} r =
rewrite sym $ monoidNeutralIsNeutralR $ neutral <.> r in
rewrite sym $ groupInverseIsInverseR $ neutral <.> r in
rewrite sym $ semigroupOpIsAssociative (inverse $ neutral <.> r) (neutral <.> r) (((inverse $ neutral <.> r) <+> (neutral <.> r)) <.> r) in
rewrite groupInverseIsInverseR $ neutral <.> r in
rewrite sym $ ringOpIsDistributiveR neutral neutral r in
rewrite monoidNeutralIsNeutralR $ the ty neutral in
groupInverseIsInverseR $ neutral <.> r
||| x0 = 0
public export
multNeutralAbsorbingR : Ring ty => (l : ty) ->
l <.> neutral {ty} = neutral {ty}
multNeutralAbsorbingR {ty} l =
rewrite sym $ monoidNeutralIsNeutralL $ l <.> neutral in
rewrite sym $ groupInverseIsInverseL $ l <.> neutral in
rewrite semigroupOpIsAssociative (l <.> ((l <.> neutral) <+> (inverse $ l <.> neutral))) (l <.> neutral) (inverse $ l <.> neutral) in
rewrite groupInverseIsInverseL $ l <.> neutral in
rewrite sym $ ringOpIsDistributiveL l neutral neutral in
rewrite monoidNeutralIsNeutralL $ the ty neutral in
groupInverseIsInverseL $ l <.> neutral
||| (-x)y = -(xy)
public export
multInverseInversesL : Ring ty => (l, r : ty) ->
inverse l <.> r = inverse (l <.> r)
multInverseInversesL l r =
rewrite sym $ monoidNeutralIsNeutralR $ inverse l <.> r in
rewrite sym $ groupInverseIsInverseR $ l <.> r in
rewrite sym $ semigroupOpIsAssociative (inverse $ l <.> r) (l <.> r) (inverse l <.> r) in
rewrite sym $ ringOpIsDistributiveR l (inverse l) r in
rewrite groupInverseIsInverseL l in
rewrite multNeutralAbsorbingL r in
monoidNeutralIsNeutralL $ inverse $ l <.> r
||| x(-y) = -(xy)
public export
multInverseInversesR : Ring ty => (l, r : ty) ->
l <.> inverse r = inverse (l <.> r)
multInverseInversesR l r =
rewrite sym $ monoidNeutralIsNeutralL $ l <.> (inverse r) in
rewrite sym $ groupInverseIsInverseL (l <.> r) in
rewrite semigroupOpIsAssociative (l <.> (inverse r)) (l <.> r) (inverse $ l <.> r) in
rewrite sym $ ringOpIsDistributiveL l (inverse r) r in
rewrite groupInverseIsInverseR r in
rewrite multNeutralAbsorbingR l in
monoidNeutralIsNeutralR $ inverse $ l <.> r
||| (-x)(-y) = xy
public export
multNegativeByNegativeIsPositive : Ring ty => (l, r : ty) ->
inverse l <.> inverse r = l <.> r
multNegativeByNegativeIsPositive l r =
rewrite multInverseInversesR (inverse l) r in
rewrite sym $ multInverseInversesL (inverse l) r in
rewrite inverseSquaredIsIdentity l in
Refl
||| (-1)x = -x
public export
inverseOfUnityR : RingWithUnity ty => (x : ty) ->
inverse (unity {ty}) <.> x = inverse x
inverseOfUnityR x =
rewrite multInverseInversesL unity x in
rewrite unityIsRingIdR x in
Refl
||| x(-1) = -x
public export
inverseOfUnityL : RingWithUnity ty => (x : ty) ->
x <.> inverse (unity {ty}) = inverse x
inverseOfUnityL x =
rewrite multInverseInversesR x unity in
rewrite unityIsRingIdL x in
Refl

View File

@ -1,18 +0,0 @@
module Control.Monad.Algebra
import Control.Algebra
import Control.Monad.Identity
%default total
public export
SemigroupV ty => SemigroupV (Identity ty) where
semigroupOpIsAssociative (Id l) (Id c) (Id r) =
rewrite semigroupOpIsAssociative l c r in Refl
public export
MonoidV ty => MonoidV (Identity ty) where
monoidNeutralIsNeutralL (Id l) =
rewrite monoidNeutralIsNeutralL l in Refl
monoidNeutralIsNeutralR (Id r) =
rewrite monoidNeutralIsNeutralR r in Refl

View File

@ -1,77 +0,0 @@
module Data.Bool.Algebra
import Control.Algebra
import Data.Bool.Xor
%default total
-- && is Bool -> Lazy Bool -> Bool,
-- but Bool -> Bool -> Bool is required
and : Bool -> Bool -> Bool
and True True = True
and _ _ = False
Semigroup Bool where
(<+>) = xor
SemigroupV Bool where
semigroupOpIsAssociative = xorAssociative
Monoid Bool where
neutral = False
MonoidV Bool where
monoidNeutralIsNeutralL True = Refl
monoidNeutralIsNeutralL False = Refl
monoidNeutralIsNeutralR True = Refl
monoidNeutralIsNeutralR False = Refl
Group Bool where
-- Each Bool is its own additive inverse.
inverse = id
groupInverseIsInverseR True = Refl
groupInverseIsInverseR False = Refl
AbelianGroup Bool where
groupOpIsCommutative = xorCommutative
Ring Bool where
(<.>) = and
ringOpIsAssociative True True True = Refl
ringOpIsAssociative True True False = Refl
ringOpIsAssociative True False True = Refl
ringOpIsAssociative True False False = Refl
ringOpIsAssociative False True True = Refl
ringOpIsAssociative False False True = Refl
ringOpIsAssociative False True False = Refl
ringOpIsAssociative False False False = Refl
ringOpIsDistributiveL True True True = Refl
ringOpIsDistributiveL True True False = Refl
ringOpIsDistributiveL True False True = Refl
ringOpIsDistributiveL True False False = Refl
ringOpIsDistributiveL False True True = Refl
ringOpIsDistributiveL False False True = Refl
ringOpIsDistributiveL False True False = Refl
ringOpIsDistributiveL False False False = Refl
ringOpIsDistributiveR True True True = Refl
ringOpIsDistributiveR True True False = Refl
ringOpIsDistributiveR True False True = Refl
ringOpIsDistributiveR True False False = Refl
ringOpIsDistributiveR False True True = Refl
ringOpIsDistributiveR False False True = Refl
ringOpIsDistributiveR False True False = Refl
ringOpIsDistributiveR False False False = Refl
RingWithUnity Bool where
unity = True
unityIsRingIdL True = Refl
unityIsRingIdL False = Refl
unityIsRingIdR True = Refl
unityIsRingIdR False = Refl

View File

@ -1,15 +0,0 @@
module Data.List.Algebra
import Control.Algebra
import Data.List
%default total
public export
SemigroupV (List ty) where
semigroupOpIsAssociative = appendAssociative
public export
MonoidV (List ty) where
monoidNeutralIsNeutralL = appendNilRightNeutral
monoidNeutralIsNeutralR _ = Refl

View File

@ -1,15 +0,0 @@
module Data.Morphisms.Algebra
import Control.Algebra
import Data.Morphisms
%default total
public export
SemigroupV (Endomorphism ty) where
semigroupOpIsAssociative (Endo _) (Endo _) (Endo _) = Refl
public export
MonoidV (Endomorphism ty) where
monoidNeutralIsNeutralL (Endo _) = Refl
monoidNeutralIsNeutralR (Endo _) = Refl

View File

@ -1,19 +0,0 @@
module Data.Nat.Algebra
import Control.Algebra
import Data.Nat
%default total
namespace SemigroupV
public export
[Additive] SemigroupV Nat using Semigroup.Additive where
semigroupOpIsAssociative = plusAssociative
namespace MonoidV
public export
[Additive] MonoidV Nat using Monoid.Additive SemigroupV.Additive where
monoidNeutralIsNeutralL = plusZeroRightNeutral
monoidNeutralIsNeutralR = plusZeroLeftNeutral

View File

@ -9,12 +9,6 @@ modules = Control.ANSI,
Control.Delayed, Control.Delayed,
Control.Monad.Algebra,
Control.Algebra,
Control.Algebra.Laws,
Control.Algebra.Implementations,
Control.Arrow, Control.Arrow,
Control.Category, Control.Category,
@ -23,8 +17,6 @@ modules = Control.ANSI,
Data.Binary.Digit, Data.Binary.Digit,
Data.Binary, Data.Binary,
Data.Bool.Algebra,
Data.Fin.Extra, Data.Fin.Extra,
Data.Fun.Extra, Data.Fun.Extra,
@ -40,7 +32,6 @@ modules = Control.ANSI,
Data.Linear.Array, Data.Linear.Array,
Data.List.Algebra,
Data.List.TailRec, Data.List.TailRec,
Data.List.Equalities, Data.List.Equalities,
Data.List.Extra, Data.List.Extra,
@ -56,9 +47,6 @@ modules = Control.ANSI,
Data.Monoid.Exponentiation, Data.Monoid.Exponentiation,
Data.Morphisms.Algebra,
Data.Nat.Algebra,
Data.Nat.Ack, Data.Nat.Ack,
Data.Nat.Division, Data.Nat.Division,
Data.Nat.Equational, Data.Nat.Equational,