mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-11-24 15:07:37 +03:00
Data.Nat proofs should be exported
I assumed these were copied directly from the Idris 1 libraries, where there was an %access directive that we don't have any more.
This commit is contained in:
parent
9156084075
commit
58e28170ac
@ -506,6 +506,7 @@ multDistributesOverMinusRight left centre right =
|
||||
|
||||
-- minimum / maximum proofs
|
||||
|
||||
export
|
||||
maximumAssociative : (l, c, r : Nat) ->
|
||||
maximum l (maximum c r) = maximum (maximum l c) r
|
||||
maximumAssociative Z _ _ = Refl
|
||||
@ -513,16 +514,19 @@ maximumAssociative (S _) Z _ = Refl
|
||||
maximumAssociative (S _) (S _) Z = Refl
|
||||
maximumAssociative (S k) (S j) (S i) = rewrite maximumAssociative k j i in Refl
|
||||
|
||||
export
|
||||
maximumCommutative : (l, r : Nat) -> maximum l r = maximum r l
|
||||
maximumCommutative Z Z = Refl
|
||||
maximumCommutative Z (S _) = Refl
|
||||
maximumCommutative (S _) Z = Refl
|
||||
maximumCommutative (S k) (S j) = rewrite maximumCommutative k j in Refl
|
||||
|
||||
export
|
||||
maximumIdempotent : (n : Nat) -> maximum n n = n
|
||||
maximumIdempotent Z = Refl
|
||||
maximumIdempotent (S k) = cong S $ maximumIdempotent k
|
||||
|
||||
export
|
||||
minimumAssociative : (l, c, r : Nat) ->
|
||||
minimum l (minimum c r) = minimum (minimum l c) r
|
||||
minimumAssociative Z _ _ = Refl
|
||||
@ -530,42 +534,52 @@ minimumAssociative (S _) Z _ = Refl
|
||||
minimumAssociative (S _) (S _) Z = Refl
|
||||
minimumAssociative (S k) (S j) (S i) = rewrite minimumAssociative k j i in Refl
|
||||
|
||||
export
|
||||
minimumCommutative : (l, r : Nat) -> minimum l r = minimum r l
|
||||
minimumCommutative Z Z = Refl
|
||||
minimumCommutative Z (S _) = Refl
|
||||
minimumCommutative (S _) Z = Refl
|
||||
minimumCommutative (S k) (S j) = rewrite minimumCommutative k j in Refl
|
||||
|
||||
export
|
||||
minimumIdempotent : (n : Nat) -> minimum n n = n
|
||||
minimumIdempotent Z = Refl
|
||||
minimumIdempotent (S k) = cong S $ minimumIdempotent k
|
||||
|
||||
export
|
||||
minimumZeroZeroLeft : (left : Nat) -> minimum left 0 = Z
|
||||
minimumZeroZeroLeft left = rewrite minimumCommutative left 0 in Refl
|
||||
|
||||
export
|
||||
minimumSuccSucc : (left, right : Nat) ->
|
||||
minimum (S left) (S right) = S (minimum left right)
|
||||
minimumSuccSucc _ _ = Refl
|
||||
|
||||
export
|
||||
maximumZeroNLeft : (left : Nat) -> maximum left Z = left
|
||||
maximumZeroNLeft left = rewrite maximumCommutative left Z in Refl
|
||||
|
||||
export
|
||||
maximumSuccSucc : (left, right : Nat) ->
|
||||
S (maximum left right) = maximum (S left) (S right)
|
||||
maximumSuccSucc _ _ = Refl
|
||||
|
||||
export
|
||||
sucMaxL : (l : Nat) -> maximum (S l) l = (S l)
|
||||
sucMaxL Z = Refl
|
||||
sucMaxL (S l) = cong S $ sucMaxL l
|
||||
|
||||
export
|
||||
sucMaxR : (l : Nat) -> maximum l (S l) = (S l)
|
||||
sucMaxR Z = Refl
|
||||
sucMaxR (S l) = cong S $ sucMaxR l
|
||||
|
||||
export
|
||||
sucMinL : (l : Nat) -> minimum (S l) l = l
|
||||
sucMinL Z = Refl
|
||||
sucMinL (S l) = cong S $ sucMinL l
|
||||
|
||||
export
|
||||
sucMinR : (l : Nat) -> minimum l (S l) = l
|
||||
sucMinR Z = Refl
|
||||
sucMinR (S l) = cong S $ sucMinR l
|
||||
|
Loading…
Reference in New Issue
Block a user