mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-11-28 11:05:17 +03:00
commit
60527d127f
@ -58,6 +58,11 @@ data NotBothZero : (n, m : Nat) -> Type where
|
||||
LeftIsNotZero : NotBothZero (S n) m
|
||||
RightIsNotZero : NotBothZero n (S m)
|
||||
|
||||
export
|
||||
Uninhabited (NotBothZero 0 0) where
|
||||
uninhabited LeftIsNotZero impossible
|
||||
uninhabited RightIsNotZero impossible
|
||||
|
||||
public export
|
||||
data LTE : (n, m : Nat) -> Type where
|
||||
LTEZero : LTE Z right
|
||||
|
124
libs/contrib/Control/Arrow.idr
Normal file
124
libs/contrib/Control/Arrow.idr
Normal file
@ -0,0 +1,124 @@
|
||||
module Control.Arrow
|
||||
|
||||
import Control.Category
|
||||
import Data.Either
|
||||
import Data.Morphisms
|
||||
|
||||
|
||||
infixr 5 <++>
|
||||
infixr 3 ***
|
||||
infixr 3 &&&
|
||||
infixr 2 +++
|
||||
infixr 2 \|/
|
||||
|
||||
public export
|
||||
interface Category arr => Arrow (0 arr : Type -> Type -> Type) where
|
||||
arrow : (a -> b) -> arr a b
|
||||
first : arr a b -> arr (a, c) (b, c)
|
||||
|
||||
second : arr a b -> arr (c, a) (c, b)
|
||||
second f = arrow {arr = arr} swap >>> first f >>> arrow {arr = arr} swap
|
||||
where
|
||||
swap : (x, y) -> (y, x)
|
||||
swap (a, b) = (b, a)
|
||||
|
||||
(***) : arr a b -> arr a' b' -> arr (a, a') (b, b')
|
||||
f *** g = first f >>> second g
|
||||
|
||||
(&&&) : arr a b -> arr a b' -> arr a (b, b')
|
||||
f &&& g = arrow dup >>> f *** g
|
||||
where
|
||||
dup : x -> (x,x)
|
||||
dup x = (x,x)
|
||||
|
||||
public export
|
||||
implementation Arrow Morphism where
|
||||
arrow f = Mor f
|
||||
first (Mor f) = Mor $ \(a, b) => (f a, b)
|
||||
second (Mor f) = Mor $ \(a, b) => (a, f b)
|
||||
(Mor f) *** (Mor g) = Mor $ \(a, b) => (f a, g b)
|
||||
(Mor f) &&& (Mor g) = Mor $ \a => (f a, g a)
|
||||
|
||||
public export
|
||||
implementation Monad m => Arrow (Kleislimorphism m) where
|
||||
arrow f = Kleisli (pure . f)
|
||||
first (Kleisli f) = Kleisli $ \(a, b) => do x <- f a
|
||||
pure (x, b)
|
||||
|
||||
second (Kleisli f) = Kleisli $ \(a, b) => do x <- f b
|
||||
pure (a, x)
|
||||
|
||||
(Kleisli f) *** (Kleisli g) = Kleisli $ \(a, b) => do x <- f a
|
||||
y <- g b
|
||||
pure (x, y)
|
||||
|
||||
(Kleisli f) &&& (Kleisli g) = Kleisli $ \a => do x <- f a
|
||||
y <- g a
|
||||
pure (x, y)
|
||||
|
||||
public export
|
||||
interface Arrow arr => ArrowZero (0 arr : Type -> Type -> Type) where
|
||||
zeroArrow : arr a b
|
||||
|
||||
public export
|
||||
interface ArrowZero arr => ArrowPlus (0 arr : Type -> Type -> Type) where
|
||||
(<++>) : arr a b -> arr a b -> arr a b
|
||||
|
||||
public export
|
||||
interface Arrow arr => ArrowChoice (0 arr : Type -> Type -> Type) where
|
||||
left : arr a b -> arr (Either a c) (Either b c)
|
||||
|
||||
right : arr a b -> arr (Either c a) (Either c b)
|
||||
right f = arrow mirror >>> left f >>> arrow mirror
|
||||
|
||||
|
||||
(+++) : arr a b -> arr c d -> arr (Either a c) (Either b d)
|
||||
f +++ g = left f >>> right g
|
||||
|
||||
(\|/) : arr a b -> arr c b -> arr (Either a c) b
|
||||
f \|/ g = f +++ g >>> arrow fromEither
|
||||
where
|
||||
fromEither : Either b b -> b
|
||||
fromEither (Left b) = b
|
||||
fromEither (Right b) = b
|
||||
|
||||
public export
|
||||
implementation Monad m => ArrowChoice (Kleislimorphism m) where
|
||||
left f = f +++ (arrow id)
|
||||
right f = (arrow id) +++ f
|
||||
f +++ g = (f >>> (arrow Left)) \|/ (g >>> (arrow Right))
|
||||
(Kleisli f) \|/ (Kleisli g) = Kleisli (either f g)
|
||||
|
||||
public export
|
||||
interface Arrow arr => ArrowApply (0 arr : Type -> Type -> Type) where
|
||||
app : arr (arr a b, a) b
|
||||
|
||||
public export
|
||||
implementation Monad m => ArrowApply (Kleislimorphism m) where
|
||||
app = Kleisli $ \(Kleisli f, x) => f x
|
||||
|
||||
public export
|
||||
data ArrowMonad : (Type -> Type -> Type) -> Type -> Type where
|
||||
MkArrowMonad : (runArrowMonad : arr (the Type ()) a) -> ArrowMonad arr a
|
||||
|
||||
public export
|
||||
runArrowMonad : ArrowMonad arr a -> arr (the Type ()) a
|
||||
runArrowMonad (MkArrowMonad a) = a
|
||||
|
||||
public export
|
||||
implementation Arrow a => Functor (ArrowMonad a) where
|
||||
map f (MkArrowMonad m) = MkArrowMonad $ m >>> arrow f
|
||||
|
||||
public export
|
||||
implementation Arrow a => Applicative (ArrowMonad a) where
|
||||
pure x = MkArrowMonad $ arrow $ \_ => x
|
||||
(MkArrowMonad f) <*> (MkArrowMonad x) = MkArrowMonad $ f &&& x >>> arrow (uncurry id)
|
||||
|
||||
public export
|
||||
implementation ArrowApply a => Monad (ArrowMonad a) where
|
||||
(MkArrowMonad m) >>= f =
|
||||
MkArrowMonad $ m >>> (arrow $ \x => (runArrowMonad (f x), ())) >>> app
|
||||
|
||||
public export
|
||||
interface Arrow arr => ArrowLoop (0 arr : Type -> Type -> Type) where
|
||||
loop : arr (Pair a c) (Pair b c) -> arr a b
|
27
libs/contrib/Control/Category.idr
Normal file
27
libs/contrib/Control/Category.idr
Normal file
@ -0,0 +1,27 @@
|
||||
module Control.Category
|
||||
|
||||
import Data.Morphisms
|
||||
|
||||
|
||||
public export
|
||||
interface Category (0 cat : Type -> Type -> Type) where
|
||||
id : cat a a
|
||||
(.) : cat b c -> cat a b -> cat a c
|
||||
|
||||
public export
|
||||
Category Morphism where
|
||||
id = Mor id
|
||||
-- disambiguation needed below, because unification can now get further
|
||||
-- here with Category.(.) and it's only interface resolution that fails!
|
||||
(Mor f) . (Mor g) = Mor $ Basics.(.) f g
|
||||
|
||||
public export
|
||||
Monad m => Category (Kleislimorphism m) where
|
||||
id = Kleisli (pure . id)
|
||||
(Kleisli f) . (Kleisli g) = Kleisli $ \a => g a >>= f
|
||||
|
||||
infixr 1 >>>
|
||||
|
||||
public export
|
||||
(>>>) : Category cat => cat a b -> cat b c -> cat a c
|
||||
f >>> g = g . f
|
55
libs/contrib/Control/Monad/Trans/Either.idr
Normal file
55
libs/contrib/Control/Monad/Trans/Either.idr
Normal file
@ -0,0 +1,55 @@
|
||||
module Control.Monad.Trans.Either
|
||||
|
||||
%default total
|
||||
|
||||
|
||||
public export
|
||||
record EitherT m a b where
|
||||
constructor MkEitherT
|
||||
runEitherT : m (Either a b)
|
||||
|
||||
export
|
||||
Functor m => Functor (EitherT m a) where
|
||||
map f (MkEitherT runEitherT) = MkEitherT (map (map f) runEitherT)
|
||||
|
||||
export
|
||||
Monad m => Applicative (EitherT m a) where
|
||||
pure = MkEitherT . pure . Right
|
||||
(MkEitherT left) <*> (MkEitherT right) = MkEitherT $ do
|
||||
l <- left
|
||||
r <- right
|
||||
pure (l <*> r)
|
||||
|
||||
export
|
||||
Monad m => Monad (EitherT m a) where
|
||||
join (MkEitherT runEitherT) = MkEitherT $ do
|
||||
case !runEitherT of
|
||||
Left l => pure (Left l)
|
||||
Right (MkEitherT inner) => inner
|
||||
|
||||
|
||||
export
|
||||
eitherT : Monad m => (a -> m c) -> (b -> m c) -> EitherT m a b -> m c
|
||||
eitherT f g (MkEitherT runEitherT) = case !runEitherT of
|
||||
Left l => f l
|
||||
Right r => g r
|
||||
|
||||
export
|
||||
bimapEitherT : Functor m => (a -> c) -> (b -> d) -> EitherT m a b -> EitherT m c d
|
||||
bimapEitherT f g (MkEitherT runEitherT) = MkEitherT (map m runEitherT)
|
||||
where
|
||||
m : Either a b -> Either c d
|
||||
m (Left l) = Left (f l)
|
||||
m (Right r) = Right (g r)
|
||||
|
||||
export
|
||||
mapEitherT : (m (Either a b) -> n (Either c d)) -> EitherT m a b -> EitherT n c d
|
||||
mapEitherT f (MkEitherT runEitherT) = MkEitherT $ f runEitherT
|
||||
|
||||
export
|
||||
hoist : Applicative m => Either a b -> EitherT m a b
|
||||
hoist e = MkEitherT $ pure e
|
||||
|
||||
export
|
||||
fail : Applicative m => a -> EitherT m a b
|
||||
fail = MkEitherT . pure . Left
|
209
libs/contrib/Control/Validation.idr
Normal file
209
libs/contrib/Control/Validation.idr
Normal file
@ -0,0 +1,209 @@
|
||||
module Control.Validation
|
||||
|
||||
-- Main purpose of this module is verifying programmer's assumptions about
|
||||
-- user input. On one hand we want to write precisely typed programs, including
|
||||
-- assumptions about input expressed in types and prove correctness of these
|
||||
-- programs. On the other we get an unstructured user input as a string or even
|
||||
-- a raw sequence of bytes.
|
||||
|
||||
-- This module intends to provide a framework for verifying our assumptions
|
||||
-- about user input and constructing proofs that input is indeed valid or
|
||||
-- failing early with a nice error message if it isn't.
|
||||
|
||||
import Control.Monad.Identity
|
||||
import Control.Monad.Syntax
|
||||
import Control.Monad.Trans.Either
|
||||
import Data.Nat
|
||||
import Data.Strings
|
||||
import Data.Vect
|
||||
import Decidable.Equality
|
||||
|
||||
%default total
|
||||
|
||||
|
||||
public export
|
||||
Result : (Type -> Type) -> Type -> Type
|
||||
Result m = EitherT m String
|
||||
|
||||
||| Validators in this module come in two flavours: Structural Validators and
|
||||
||| Property Validators. They are both wrappers around functions which take
|
||||
||| some input and confirm that it's valid (returning some witness of its
|
||||
||| validity) or fail with an error described by a string.
|
||||
export
|
||||
data ValidatorT : (Type -> Type) -> Type -> Type -> Type where
|
||||
MkValidator : (a -> Result m b) -> ValidatorT m a b
|
||||
|
||||
||| A type of validator trying to prove properties of values. It's type is
|
||||
||| significantly different than that of an ordinary validator and cannot be
|
||||
||| made an instance of Monad interface, because it's last parameter is
|
||||
||| (t -> Type) instead of just Type. Therefore it must be explicitly turned
|
||||
||| into an ordinary validator using the prop function below.
|
||||
data PropValidator : (Type -> Type) -> (t : Type) -> (t -> Type) -> Type where
|
||||
MkPropValidator : ((x : t) -> Result m (p x)) -> PropValidator m t p
|
||||
|
||||
public export
|
||||
Validator : Type -> Type -> Type
|
||||
Validator = ValidatorT Identity
|
||||
|
||||
|
||||
||| Run validation on given input, returning (Right refinedInput) if everything
|
||||
||| is all right or (Left errorMessage) if it's not.
|
||||
export
|
||||
validateT : ValidatorT m a b -> a -> Result m b
|
||||
validateT (MkValidator v) = v
|
||||
|
||||
||| Run validation within the Identity monad and unwrap result immediately.
|
||||
export
|
||||
validate : Validator a b -> a -> Either String b
|
||||
validate v = runIdentity . runEitherT . validateT v
|
||||
|
||||
||| Given a function from input to Either String output, make a validator.
|
||||
export
|
||||
validator : (a -> Result m b) -> ValidatorT m a b
|
||||
validator = MkValidator
|
||||
|
||||
export
|
||||
Functor m => Functor (ValidatorT m a) where
|
||||
map f v = MkValidator (map f . validateT v)
|
||||
|
||||
export
|
||||
Monad m => Applicative (ValidatorT m a) where
|
||||
pure a = MkValidator (const $ pure a)
|
||||
f <*> a = MkValidator (\x => validateT f x <*> validateT a x)
|
||||
|
||||
export
|
||||
Monad m => Monad (ValidatorT m a) where
|
||||
v >>= f = MkValidator $ \x => do
|
||||
r <- validateT v x
|
||||
validateT (f r) x
|
||||
|
||||
||| Plug a property validator into the chain of other validators. The value
|
||||
||| under validation will be ignored and the value whose property is going to
|
||||
||| be checked must be supplied manually. Otherwise Idris won;t be able to
|
||||
||| unify.
|
||||
prop : PropValidator m t p -> (x : t) -> ValidatorT m a (p x)
|
||||
prop (MkPropValidator v) x = MkValidator (const $ v x)
|
||||
|
||||
replaceError : Monad m => String -> Result m a -> Result m a
|
||||
replaceError e = bimapEitherT (const e) id
|
||||
|
||||
||| Replace validator's default error message.
|
||||
export
|
||||
withError : Monad m => String -> ValidatorT m a b -> ValidatorT m a b
|
||||
withError e (MkValidator f) = MkValidator (replaceError e . f)
|
||||
|
||||
||| A validator which always fails with a given message.
|
||||
export
|
||||
fail : Applicative m => String -> ValidatorT m a b
|
||||
fail s = MkValidator $ \_ => fail s
|
||||
|
||||
infixl 2 >>>
|
||||
|
||||
||| Compose two validators so that the second validates the output of the first.
|
||||
export
|
||||
(>>>) : Monad m => ValidatorT m a b -> ValidatorT m b c -> ValidatorT m a c
|
||||
left >>> right = MkValidator (validateT left >=> validateT right)
|
||||
|
||||
Monad m => Alternative (ValidatorT m a) where
|
||||
left <|> right = MkValidator \x => MkEitherT $ do
|
||||
case !(runEitherT $ validateT left x) of
|
||||
(Right r) => pure $ Right r
|
||||
(Left e) => case !(runEitherT $ validateT right x) of
|
||||
(Right r) => pure $ Right r
|
||||
(Left e') => pure $ Left (e <+> " / " <+> e')
|
||||
|
||||
||| Alter the input before validation using given function.
|
||||
export
|
||||
contramap : (a -> b) -> ValidatorT m b c -> ValidatorT m a c
|
||||
contramap f v = MkValidator (validateT v . f)
|
||||
|
||||
|
||||
||| Given a value x and a decision procedure for property p, validateT if p x
|
||||
||| holds, returning a proof if it does. The procedure also has access to the
|
||||
||| raw input in case it was helpful.
|
||||
export
|
||||
decide : Monad m => (t -> String) -> ((x : t) -> Dec (p x)) -> PropValidator m t p
|
||||
decide msg dec = MkPropValidator \x => case dec x of
|
||||
Yes prf => pure prf
|
||||
No _ => fail (msg x)
|
||||
|
||||
||| Given a function converting a into Maybe b, build a Validator of a
|
||||
||| converting it into b.
|
||||
export
|
||||
fromMaybe : Monad m => (a -> String) -> (a -> Maybe b) -> ValidatorT m a b
|
||||
fromMaybe e f = MkValidator \a => case f a of
|
||||
Nothing => fail $ e a
|
||||
Just b => pure b
|
||||
|
||||
||| Verify whether a String represents a natural number.
|
||||
export
|
||||
natural : Monad m => ValidatorT m String Nat
|
||||
natural = fromMaybe mkError parsePositive
|
||||
where
|
||||
mkError : String -> String
|
||||
mkError s = "'" <+> s <+> "' is not a natural number."
|
||||
|
||||
||| Verify whether a String represents an Integer
|
||||
export
|
||||
integral : (Num a, Neg a, Monad m) => ValidatorT m String a
|
||||
integral = fromMaybe mkError parseInteger
|
||||
where
|
||||
mkError : String -> String
|
||||
mkError s = "'" <+> s <+> "' is not an integer."
|
||||
|
||||
||| Verify that a string represents a decimal fraction.
|
||||
export
|
||||
double : Monad m => ValidatorT m String Double
|
||||
double = fromMaybe mkError parseDouble
|
||||
where
|
||||
mkError : String -> String
|
||||
mkError s = "'" <+> s <+> "is not a decimal."
|
||||
|
||||
|
||||
||| Verify whether a list has a desired length.
|
||||
export
|
||||
length : Monad m => (l : Nat) -> ValidatorT m (List a) (Vect l a)
|
||||
length l = MkValidator (validateVector l)
|
||||
where
|
||||
validateVector : (l : Nat) -> List a -> Result m (Vect l a)
|
||||
validateVector Z [] = pure []
|
||||
validateVector (S _) [] = fail "Missing list element."
|
||||
validateVector Z (_ :: _) = fail "Excessive list element."
|
||||
validateVector (S k) (x :: xs) = do
|
||||
ys <- validateVector k xs
|
||||
pure (x :: ys)
|
||||
|
||||
||| Verify that certain values are equal.
|
||||
export
|
||||
equal : (DecEq t, Monad m) => (a : t) -> PropValidator m t (\b => a = b)
|
||||
equal a = MkPropValidator \b => case decEq a b of
|
||||
Yes prf => pure prf
|
||||
No _ => fail "Values are not equal."
|
||||
|
||||
||| Verify that a Nat is less than or equal to certain bound.
|
||||
export
|
||||
lteNat : Monad m => (bound : Nat) -> PropValidator m Nat (flip LTE bound)
|
||||
lteNat bound = decide
|
||||
(\n => show n <+> " is not lower or equal to " <+> show bound)
|
||||
(\n => isLTE n bound)
|
||||
|
||||
||| Verify that a Nat is greater than or equal to certain bound.
|
||||
export
|
||||
gteNat : Monad m => (bound : Nat) -> PropValidator m Nat (flip GTE bound)
|
||||
gteNat bound = decide
|
||||
(\n => show n <+> " is not greater or equal to " <+> show bound)
|
||||
(isLTE bound)
|
||||
|
||||
||| Verify that a Nat is strictly less than a certain bound.
|
||||
export
|
||||
ltNat : Monad m => (bound : Nat) -> PropValidator m Nat (flip LT bound)
|
||||
ltNat bound = decide
|
||||
(\n => show n <+> " is not strictly lower than " <+> show bound)
|
||||
(\n => isLTE (S n) bound)
|
||||
|
||||
||| Verify that a Nat is strictly greate than a certain bound.
|
||||
export
|
||||
gtNat : Monad m => (bound : Nat) -> PropValidator m Nat (flip GT bound)
|
||||
gtNat bound = decide
|
||||
(\n => show n <+> " is not strictly greater than " <+> show bound)
|
||||
(isLTE (S bound))
|
@ -10,11 +10,17 @@ modules = Control.ANSI,
|
||||
|
||||
Control.Monad.Algebra,
|
||||
Control.Monad.Syntax,
|
||||
Control.Monad.Trans.Either,
|
||||
|
||||
Control.Algebra,
|
||||
Control.Algebra.Laws,
|
||||
Control.Algebra.Implementations,
|
||||
|
||||
Control.Arrow,
|
||||
Control.Category,
|
||||
|
||||
Control.Validation,
|
||||
|
||||
Data.Bool.Algebra,
|
||||
Data.Bool.Decidable,
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user