mirror of
https://github.com/idris-lang/Idris2.git
synced 2025-01-04 06:10:15 +03:00
Simplify Equality
This commit is contained in:
parent
48fe4382eb
commit
7d1ee9dd08
@ -1,7 +1,5 @@
|
|||||||
module Data.List
|
module Data.List
|
||||||
|
|
||||||
import Decidable.Equality
|
|
||||||
|
|
||||||
public export
|
public export
|
||||||
isNil : List a -> Bool
|
isNil : List a -> Bool
|
||||||
isNil [] = True
|
isNil [] = True
|
||||||
@ -597,6 +595,12 @@ export
|
|||||||
Uninhabited (Prelude.(::) x xs = []) where
|
Uninhabited (Prelude.(::) x xs = []) where
|
||||||
uninhabited Refl impossible
|
uninhabited Refl impossible
|
||||||
|
|
||||||
|
||| (::) is injective
|
||||||
|
export
|
||||||
|
consInjective : {x : a} -> {xs : List a} -> {y : b} -> {ys : List b} ->
|
||||||
|
x :: xs = y :: ys -> (x = y, xs = ys)
|
||||||
|
consInjective Refl = (Refl, Refl)
|
||||||
|
|
||||||
||| The empty list is a right identity for append.
|
||| The empty list is a right identity for append.
|
||||||
export
|
export
|
||||||
appendNilRightNeutral : (l : List a) ->
|
appendNilRightNeutral : (l : List a) ->
|
||||||
@ -631,32 +635,3 @@ revAppend (v :: vs) ns
|
|||||||
rewrite sym (revAppend vs ns) in
|
rewrite sym (revAppend vs ns) in
|
||||||
rewrite appendAssociative (reverse ns) (reverse vs) [v] in
|
rewrite appendAssociative (reverse ns) (reverse vs) [v] in
|
||||||
Refl
|
Refl
|
||||||
|
|
||||||
public export
|
|
||||||
lemma_val_not_nil : {x : t} -> {xs : List t} -> ((x :: xs) = Prelude.Nil {a = t} -> Void)
|
|
||||||
lemma_val_not_nil Refl impossible
|
|
||||||
|
|
||||||
public export
|
|
||||||
lemma_x_eq_xs_neq : {x : t} -> {xs : List t} -> {y : t} -> {ys : List t} -> (x = y) -> (xs = ys -> Void) -> ((x :: xs) = (y :: ys) -> Void)
|
|
||||||
lemma_x_eq_xs_neq Refl p Refl = p Refl
|
|
||||||
|
|
||||||
public export
|
|
||||||
lemma_x_neq_xs_eq : {x : t} -> {xs : List t} -> {y : t} -> {ys : List t} -> (x = y -> Void) -> (xs = ys) -> ((x :: xs) = (y :: ys) -> Void)
|
|
||||||
lemma_x_neq_xs_eq p Refl Refl = p Refl
|
|
||||||
|
|
||||||
public export
|
|
||||||
lemma_x_neq_xs_neq : {x : t} -> {xs : List t} -> {y : t} -> {ys : List t} -> (x = y -> Void) -> (xs = ys -> Void) -> ((x :: xs) = (y :: ys) -> Void)
|
|
||||||
lemma_x_neq_xs_neq p p' Refl = p Refl
|
|
||||||
|
|
||||||
public export
|
|
||||||
implementation DecEq a => DecEq (List a) where
|
|
||||||
decEq [] [] = Yes Refl
|
|
||||||
decEq (x :: xs) [] = No lemma_val_not_nil
|
|
||||||
decEq [] (x :: xs) = No (negEqSym lemma_val_not_nil)
|
|
||||||
decEq (x :: xs) (y :: ys) with (decEq x y)
|
|
||||||
decEq (x :: xs) (x :: ys) | Yes Refl with (decEq xs ys)
|
|
||||||
decEq (x :: xs) (x :: xs) | (Yes Refl) | (Yes Refl) = Yes Refl
|
|
||||||
decEq (x :: xs) (x :: ys) | (Yes Refl) | (No p) = No (\eq => lemma_x_eq_xs_neq Refl p eq)
|
|
||||||
decEq (x :: xs) (y :: ys) | No p with (decEq xs ys)
|
|
||||||
decEq (x :: xs) (y :: xs) | (No p) | (Yes Refl) = No (\eq => lemma_x_neq_xs_eq p Refl eq)
|
|
||||||
decEq (x :: xs) (y :: ys) | (No p) | (No p') = No (\eq => lemma_x_neq_xs_neq p p' eq)
|
|
||||||
|
@ -2,6 +2,7 @@ module Decidable.Equality
|
|||||||
|
|
||||||
import Data.Maybe
|
import Data.Maybe
|
||||||
import Data.Nat
|
import Data.Nat
|
||||||
|
import Data.List
|
||||||
|
|
||||||
%default total
|
%default total
|
||||||
|
|
||||||
@ -36,34 +37,29 @@ decEqSelfIsYes {x} with (decEq x x)
|
|||||||
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
||||||
|
|
||||||
export
|
export
|
||||||
implementation DecEq () where
|
DecEq () where
|
||||||
decEq () () = Yes Refl
|
decEq () () = Yes Refl
|
||||||
|
|
||||||
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
||||||
-- Booleans
|
-- Booleans
|
||||||
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
||||||
trueNotFalse : True = False -> Void
|
|
||||||
trueNotFalse Refl impossible
|
|
||||||
|
|
||||||
export
|
export
|
||||||
implementation DecEq Bool where
|
DecEq Bool where
|
||||||
decEq True True = Yes Refl
|
decEq True True = Yes Refl
|
||||||
decEq False False = Yes Refl
|
decEq False False = Yes Refl
|
||||||
decEq True False = No trueNotFalse
|
decEq False True = No absurd
|
||||||
decEq False True = No (negEqSym trueNotFalse)
|
decEq True False = No absurd
|
||||||
|
|
||||||
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
||||||
-- Nat
|
-- Nat
|
||||||
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
||||||
|
|
||||||
ZnotS : Z = S n -> Void
|
|
||||||
ZnotS Refl impossible
|
|
||||||
|
|
||||||
export
|
export
|
||||||
implementation DecEq Nat where
|
DecEq Nat where
|
||||||
decEq Z Z = Yes Refl
|
decEq Z Z = Yes Refl
|
||||||
decEq Z (S _) = No ZnotS
|
decEq Z (S _) = No absurd
|
||||||
decEq (S _) Z = No (negEqSym ZnotS)
|
decEq (S _) Z = No absurd
|
||||||
decEq (S n) (S m) with (decEq n m)
|
decEq (S n) (S m) with (decEq n m)
|
||||||
decEq (S n) (S m) | Yes p = Yes $ cong S p
|
decEq (S n) (S m) | Yes p = Yes $ cong S p
|
||||||
decEq (S n) (S m) | No p = No $ \h : (S n = S m) => p $ succInjective n m h
|
decEq (S n) (S m) | No p = No $ \h : (S n = S m) => p $ succInjective n m h
|
||||||
@ -72,18 +68,49 @@ implementation DecEq Nat where
|
|||||||
-- Maybe
|
-- Maybe
|
||||||
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
||||||
|
|
||||||
nothingNotJust : {x : t} -> (Nothing {ty = t} = Just x) -> Void
|
|
||||||
nothingNotJust Refl impossible
|
|
||||||
|
|
||||||
export
|
export
|
||||||
implementation (DecEq t) => DecEq (Maybe t) where
|
DecEq t => DecEq (Maybe t) where
|
||||||
decEq Nothing Nothing = Yes Refl
|
decEq Nothing Nothing = Yes Refl
|
||||||
|
decEq Nothing (Just _) = No absurd
|
||||||
|
decEq (Just _) Nothing = No absurd
|
||||||
decEq (Just x') (Just y') with (decEq x' y')
|
decEq (Just x') (Just y') with (decEq x' y')
|
||||||
decEq (Just x') (Just y') | Yes p = Yes $ cong Just p
|
decEq (Just x') (Just y') | Yes p = Yes $ cong Just p
|
||||||
decEq (Just x') (Just y') | No p
|
decEq (Just x') (Just y') | No p
|
||||||
= No $ \h : Just x' = Just y' => p $ justInjective h
|
= No $ \h : Just x' = Just y' => p $ justInjective h
|
||||||
decEq Nothing (Just _) = No nothingNotJust
|
|
||||||
decEq (Just _) Nothing = No (negEqSym nothingNotJust)
|
--------------------------------------------------------------------------------
|
||||||
|
-- Tuple
|
||||||
|
--------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
pairInjective : (a, b) = (c, d) -> (a = c, b = d)
|
||||||
|
pairInjective Refl = (Refl, Refl)
|
||||||
|
|
||||||
|
export
|
||||||
|
(DecEq a, DecEq b) => DecEq (a, b) where
|
||||||
|
decEq (a, b) (a', b') with (decEq a a')
|
||||||
|
decEq (a, b) (a', b') | (No contra) =
|
||||||
|
No $ contra . fst . pairInjective
|
||||||
|
decEq (a, b) (a, b') | (Yes Refl) with (decEq b b')
|
||||||
|
decEq (a, b) (a, b) | (Yes Refl) | (Yes Refl) = Yes Refl
|
||||||
|
decEq (a, b) (a, b') | (Yes Refl) | (No contra) =
|
||||||
|
No $ contra . snd . pairInjective
|
||||||
|
|
||||||
|
--------------------------------------------------------------------------------
|
||||||
|
-- List
|
||||||
|
--------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
export
|
||||||
|
DecEq a => DecEq (List a) where
|
||||||
|
decEq [] [] = Yes Refl
|
||||||
|
decEq (x :: xs) [] = No absurd
|
||||||
|
decEq [] (x :: xs) = No absurd
|
||||||
|
decEq (x :: xs) (y :: ys) with (decEq x y)
|
||||||
|
decEq (x :: xs) (y :: ys) | No contra =
|
||||||
|
No $ contra . fst . consInjective
|
||||||
|
decEq (x :: xs) (x :: ys) | Yes Refl with (decEq xs ys)
|
||||||
|
decEq (x :: xs) (x :: xs) | (Yes Refl) | (Yes Refl) = Yes Refl
|
||||||
|
decEq (x :: xs) (x :: ys) | (Yes Refl) | (No contra) =
|
||||||
|
No $ contra . snd . consInjective
|
||||||
|
|
||||||
-- TODO: Other prelude data types
|
-- TODO: Other prelude data types
|
||||||
|
|
||||||
@ -93,59 +120,6 @@ implementation (DecEq t) => DecEq (Maybe t) where
|
|||||||
-- A postulate would be better, but erasure analysis may think they're needed
|
-- A postulate would be better, but erasure analysis may think they're needed
|
||||||
-- for computation in a higher order setting.
|
-- for computation in a higher order setting.
|
||||||
|
|
||||||
--------------------------------------------------------------------------------
|
|
||||||
-- Tuple
|
|
||||||
--------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
lemma_both_neq : (x = x' -> Void) -> (y = y' -> Void) -> ((x, y) = (x', y') -> Void)
|
|
||||||
lemma_both_neq p_x_not_x' p_y_not_y' Refl = p_x_not_x' Refl
|
|
||||||
|
|
||||||
lemma_snd_neq : (x = x) -> (y = y' -> Void) -> ((x, y) = (x, y') -> Void)
|
|
||||||
lemma_snd_neq Refl p Refl = p Refl
|
|
||||||
|
|
||||||
lemma_fst_neq_snd_eq : (x = x' -> Void) ->
|
|
||||||
(y = y') ->
|
|
||||||
((x, y) = (x', y) -> Void)
|
|
||||||
lemma_fst_neq_snd_eq p_x_not_x' Refl Refl = p_x_not_x' Refl
|
|
||||||
|
|
||||||
export
|
|
||||||
implementation (DecEq a, DecEq b) => DecEq (a, b) where
|
|
||||||
decEq (a, b) (a', b') with (decEq a a')
|
|
||||||
decEq (a, b) (a, b') | (Yes Refl) with (decEq b b')
|
|
||||||
decEq (a, b) (a, b) | (Yes Refl) | (Yes Refl) = Yes Refl
|
|
||||||
decEq (a, b) (a, b') | (Yes Refl) | (No p) = No (\eq => lemma_snd_neq Refl p eq)
|
|
||||||
decEq (a, b) (a', b') | (No p) with (decEq b b')
|
|
||||||
decEq (a, b) (a', b) | (No p) | (Yes Refl) = No (\eq => lemma_fst_neq_snd_eq p Refl eq)
|
|
||||||
decEq (a, b) (a', b') | (No p) | (No p') = No (\eq => lemma_both_neq p p' eq)
|
|
||||||
|
|
||||||
--------------------------------------------------------------------------------
|
|
||||||
-- List
|
|
||||||
--------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
lemma_val_not_nil : (the (List _) (x :: xs) = Prelude.Nil {a = t} -> Void)
|
|
||||||
lemma_val_not_nil Refl impossible
|
|
||||||
|
|
||||||
lemma_x_eq_xs_neq : (x = y) -> (xs = ys -> Void) -> (the (List _) (x :: xs) = (y :: ys) -> Void)
|
|
||||||
lemma_x_eq_xs_neq Refl p Refl = p Refl
|
|
||||||
|
|
||||||
lemma_x_neq_xs_eq : (x = y -> Void) -> (xs = ys) -> (the (List _) (x :: xs) = (y :: ys) -> Void)
|
|
||||||
lemma_x_neq_xs_eq p Refl Refl = p Refl
|
|
||||||
|
|
||||||
lemma_x_neq_xs_neq : (x = y -> Void) -> (xs = ys -> Void) -> (the (List _) (x :: xs) = (y :: ys) -> Void)
|
|
||||||
lemma_x_neq_xs_neq p p' Refl = p Refl
|
|
||||||
|
|
||||||
implementation DecEq a => DecEq (List a) where
|
|
||||||
decEq [] [] = Yes Refl
|
|
||||||
decEq (x :: xs) [] = No lemma_val_not_nil
|
|
||||||
decEq [] (x :: xs) = No (negEqSym lemma_val_not_nil)
|
|
||||||
decEq (x :: xs) (y :: ys) with (decEq x y)
|
|
||||||
decEq (x :: xs) (x :: ys) | Yes Refl with (decEq xs ys)
|
|
||||||
decEq (x :: xs) (x :: xs) | (Yes Refl) | (Yes Refl) = Yes Refl
|
|
||||||
decEq (x :: xs) (x :: ys) | (Yes Refl) | (No p) = No (\eq => lemma_x_eq_xs_neq Refl p eq)
|
|
||||||
decEq (x :: xs) (y :: ys) | No p with (decEq xs ys)
|
|
||||||
decEq (x :: xs) (y :: xs) | (No p) | (Yes Refl) = No (\eq => lemma_x_neq_xs_eq p Refl eq)
|
|
||||||
decEq (x :: xs) (y :: ys) | (No p) | (No p') = No (\eq => lemma_x_neq_xs_neq p p' eq)
|
|
||||||
|
|
||||||
|
|
||||||
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
||||||
-- Int
|
-- Int
|
||||||
|
@ -16,12 +16,6 @@ SnocNonEmpty : (xs : List a) -> (x : a) -> NonEmpty (xs `snoc` x)
|
|||||||
SnocNonEmpty [] _ = IsNonEmpty
|
SnocNonEmpty [] _ = IsNonEmpty
|
||||||
SnocNonEmpty (_::_) _ = IsNonEmpty
|
SnocNonEmpty (_::_) _ = IsNonEmpty
|
||||||
|
|
||||||
||| (::) is injective
|
|
||||||
export
|
|
||||||
consInjective : {x : a} -> {xs : List a} -> {y : b} -> {ys : List b} ->
|
|
||||||
(x :: xs) = (y :: ys) -> (x = y, xs = ys)
|
|
||||||
consInjective Refl = (Refl, Refl)
|
|
||||||
|
|
||||||
||| Two lists are equal, if their heads are equal and their tails are equal.
|
||| Two lists are equal, if their heads are equal and their tails are equal.
|
||||||
export
|
export
|
||||||
consCong2 : {x : a} -> {xs : List a} -> {y : b} -> {ys : List b} ->
|
consCong2 : {x : a} -> {xs : List a} -> {y : b} -> {ys : List b} ->
|
||||||
|
Loading…
Reference in New Issue
Block a user