From da81146388e2bf59790b879ec4dac5c39a728910 Mon Sep 17 00:00:00 2001 From: Jan de Muijnck-Hughes Date: Fri, 12 Jun 2020 10:39:57 +0100 Subject: [PATCH] Remove unsolved holes from `base`. Having unsolved holes in a 'core' library unneccessarily pollutes the list of holes shown to the user. Thus, having unfilled holes in a 'core' library is not right. These constructs can be re-added once the holes have been filled in. --- libs/base/Data/Nat.idr | 46 +++++++++++++++++++++--------------------- 1 file changed, 23 insertions(+), 23 deletions(-) diff --git a/libs/base/Data/Nat.idr b/libs/base/Data/Nat.idr index a8854de6a..c62c0165f 100644 --- a/libs/base/Data/Nat.idr +++ b/libs/base/Data/Nat.idr @@ -466,8 +466,8 @@ multDistributesOverMinusRight left centre right = -- power proofs -multPowerPowerPlus : (base, exp, exp' : Nat) -> - power base (exp + exp') = (power base exp) * (power base exp') +-- multPowerPowerPlus : (base, exp, exp' : Nat) -> +-- power base (exp + exp') = (power base exp) * (power base exp') -- multPowerPowerPlus base Z exp' = -- rewrite sym $ plusZeroRightNeutral (power base exp') in Refl -- multPowerPowerPlus base (S exp) exp' = @@ -475,21 +475,21 @@ multPowerPowerPlus : (base, exp, exp' : Nat) -> -- rewrite sym $ multAssociative base (power base exp) (power base exp') in -- Refl -powerOneNeutral : (base : Nat) -> power base 1 = base -powerOneNeutral base = rewrite multCommutative base 1 in multOneLeftNeutral base - -powerOneSuccOne : (exp : Nat) -> power 1 exp = 1 -powerOneSuccOne Z = Refl -powerOneSuccOne (S exp) = rewrite powerOneSuccOne exp in Refl - -powerPowerMultPower : (base, exp, exp' : Nat) -> - power (power base exp) exp' = power base (exp * exp') -powerPowerMultPower _ exp Z = rewrite multZeroRightZero exp in Refl -powerPowerMultPower base exp (S exp') = - rewrite powerPowerMultPower base exp exp' in - rewrite multRightSuccPlus exp exp' in - rewrite sym $ multPowerPowerPlus base exp (exp * exp') in - Refl +--powerOneNeutral : (base : Nat) -> power base 1 = base +--powerOneNeutral base = rewrite multCommutative base 1 in multOneLeftNeutral base +-- +--powerOneSuccOne : (exp : Nat) -> power 1 exp = 1 +--powerOneSuccOne Z = Refl +--powerOneSuccOne (S exp) = rewrite powerOneSuccOne exp in Refl +-- +--powerPowerMultPower : (base, exp, exp' : Nat) -> +-- power (power base exp) exp' = power base (exp * exp') +--powerPowerMultPower _ exp Z = rewrite multZeroRightZero exp in Refl +--powerPowerMultPower base exp (S exp') = +-- rewrite powerPowerMultPower base exp exp' in +-- rewrite multRightSuccPlus exp exp' in +-- rewrite sym $ multPowerPowerPlus base exp (exp * exp') in +-- Refl -- minimum / maximum proofs @@ -506,7 +506,7 @@ maximumCommutative Z (S _) = Refl maximumCommutative (S _) Z = Refl maximumCommutative (S k) (S j) = rewrite maximumCommutative k j in Refl -maximumIdempotent : (n : Nat) -> maximum n n = n +-- maximumIdempotent : (n : Nat) -> maximum n n = n -- maximumIdempotent Z = Refl -- maximumIdempotent (S k) = cong $ maximumIdempotent k @@ -523,7 +523,7 @@ minimumCommutative Z (S _) = Refl minimumCommutative (S _) Z = Refl minimumCommutative (S k) (S j) = rewrite minimumCommutative k j in Refl -minimumIdempotent : (n : Nat) -> minimum n n = n +-- minimumIdempotent : (n : Nat) -> minimum n n = n -- minimumIdempotent Z = Refl -- minimumIdempotent (S k) = cong (minimumIdempotent k) @@ -541,18 +541,18 @@ maximumSuccSucc : (left, right : Nat) -> S (maximum left right) = maximum (S left) (S right) maximumSuccSucc _ _ = Refl -sucMaxL : (l : Nat) -> maximum (S l) l = (S l) +-- sucMaxL : (l : Nat) -> maximum (S l) l = (S l) -- sucMaxL Z = Refl -- sucMaxL (S l) = cong $ sucMaxL l -sucMaxR : (l : Nat) -> maximum l (S l) = (S l) +-- sucMaxR : (l : Nat) -> maximum l (S l) = (S l) -- sucMaxR Z = Refl -- sucMaxR (S l) = cong $ sucMaxR l -sucMinL : (l : Nat) -> minimum (S l) l = l +-- sucMinL : (l : Nat) -> minimum (S l) l = l -- sucMinL Z = Refl -- sucMinL (S l) = cong $ sucMinL l -sucMinR : (l : Nat) -> minimum l (S l) = l +-- sucMinR : (l : Nat) -> minimum l (S l) = l -- sucMinR Z = Refl -- sucMinR (S l) = cong $ sucMinR l