mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-11-24 15:07:37 +03:00
[ doc ] Mark code blocks as Idris code
This commit is contained in:
parent
c6897396e8
commit
ae411fe756
@ -109,7 +109,7 @@ We treat files with an extension of ``.md`` and ``.markdown`` as CommonMark styl
|
||||
|
||||
Compare
|
||||
|
||||
```
|
||||
```idris
|
||||
map : (f : a -> b)
|
||||
-> List a
|
||||
-> List b
|
||||
|
@ -6,12 +6,12 @@
|
||||
||| depends on the length of said lists.
|
||||
|||
|
||||
||| Instead of writing:
|
||||
||| ```
|
||||
||| ```idris example
|
||||
||| f0 : (xs : List a) -> P xs
|
||||
||| ```
|
||||
|||
|
||||
||| We would write either of:
|
||||
||| ```
|
||||
||| ```idris example
|
||||
||| f1 : (n : Nat) -> (0 _ : HasLength xs n) -> P xs
|
||||
||| f2 : (n : Subset n (HasLength xs)) -> P xs
|
||||
||| ```
|
||||
|
@ -78,7 +78,7 @@ showParens True s = "(" ++ s ++ ")"
|
||||
|||
|
||||
||| Apply `showCon` to the precedence context, the constructor name, and the
|
||||
||| args shown with `showArg` and concatenated. Example:
|
||||
||| ```
|
||||
||| ```idris example
|
||||
||| data Ann a = MkAnn String a
|
||||
|||
|
||||
||| Show a => Show (Ann a) where
|
||||
|
@ -45,7 +45,7 @@ recordtypes = vcat $
|
||||
For instance, we can define a type of pairs of natural numbers
|
||||
""", "",
|
||||
"""
|
||||
```
|
||||
```idris
|
||||
record Nat2 where
|
||||
constructor MkNat2
|
||||
fst : Nat
|
||||
@ -68,7 +68,7 @@ datatypes = vcat $
|
||||
You can either use a BNF-style definition for simple types
|
||||
""", "",
|
||||
"""
|
||||
```
|
||||
```idris
|
||||
data List a = Nil | (::) a (List a)
|
||||
```
|
||||
""", "",
|
||||
@ -76,7 +76,7 @@ datatypes = vcat $
|
||||
or a GADT-style definition for indexed types
|
||||
""", "",
|
||||
"""
|
||||
```
|
||||
```idris
|
||||
data Vect : Nat -> Type -> Type where
|
||||
Nil : Vect 0 a
|
||||
(::) : a -> Vect n a -> Vect (S n) a
|
||||
@ -150,7 +150,7 @@ ifthenelse = vcat $
|
||||
For instance, in the following incomplete program
|
||||
""", "",
|
||||
"""
|
||||
```
|
||||
```idris
|
||||
notInvolutive : (b : Bool) -> not (not b) === b
|
||||
notInvolutive b = if b then ?holeTrue else ?holeFalse
|
||||
```
|
||||
@ -173,7 +173,7 @@ impossibility = vcat $
|
||||
that 0 is equal to 1:
|
||||
""", "",
|
||||
"""
|
||||
```
|
||||
```idris
|
||||
zeroIsNotOne : 0 === 1 -> Void
|
||||
zeroIsNotOne eq impossible
|
||||
```
|
||||
@ -190,7 +190,7 @@ caseof = vcat $
|
||||
For instance, in the following program
|
||||
""", "",
|
||||
"""
|
||||
```
|
||||
```idris
|
||||
assoc : (ma, mb, mc : Maybe a) ->
|
||||
((ma <|> mb) <|> mc) === (ma <|> (mb <|> mc))
|
||||
assoc ma mb mc = case ma of
|
||||
@ -238,10 +238,10 @@ implicitarg = vcat $
|
||||
argument. Users can add new hints to the database by adding a `%hint`
|
||||
pragma to their declarations. By default all data constructors are hints.
|
||||
For instance, the following function
|
||||
````
|
||||
```idris
|
||||
f : (n : Nat) -> {auto _ : n === Z} -> Nat
|
||||
f n = n
|
||||
````
|
||||
```
|
||||
will only accept arguments that can be automatically proven to be equal
|
||||
to zero.
|
||||
""", "",
|
||||
@ -249,7 +249,7 @@ implicitarg = vcat $
|
||||
* `default` takes a value of the appropriate type and if no argument is
|
||||
explicitly passed at a call site, will use that default value.
|
||||
For instance, the following function
|
||||
```
|
||||
```idris
|
||||
f : {default 0 n : Nat} -> Nat
|
||||
f = n
|
||||
```
|
||||
@ -276,7 +276,7 @@ interfacemechanism = vcat $
|
||||
implementations:
|
||||
""", "",
|
||||
"""
|
||||
```
|
||||
```idris
|
||||
interface Failing (0 a : Type) where
|
||||
fail : a
|
||||
|
||||
@ -309,7 +309,7 @@ doblock = vcat $
|
||||
`do`-based indentation) and desugared to the corresponding `let` constructs.
|
||||
|
||||
For instance the following block
|
||||
```
|
||||
```idris
|
||||
do x <- e1
|
||||
e2
|
||||
let y = e3
|
||||
@ -352,7 +352,7 @@ parametersblock = vcat $
|
||||
default value `dflt`
|
||||
""", "",
|
||||
"""
|
||||
```
|
||||
```idris
|
||||
parameters (dflt : a)
|
||||
|
||||
head : List a -> a
|
||||
@ -377,7 +377,7 @@ mutualblock = vcat $
|
||||
"""
|
||||
Mutual blocks allow users to have inter-dependent declarations. For instance
|
||||
we can define the `odd` and `even` checks in terms of each other like so:
|
||||
```
|
||||
```idris
|
||||
mutual
|
||||
|
||||
odd : Nat -> Bool
|
||||
@ -394,7 +394,7 @@ mutualblock = vcat $
|
||||
forward-declaration feature: all the mutual declarations come first and then
|
||||
their definitions. In other words, the earlier example using a `mutual` block
|
||||
is equivalent to the following
|
||||
```
|
||||
```idris
|
||||
odd : Nat -> Bool
|
||||
even : Nat -> Bool
|
||||
|
||||
@ -415,7 +415,7 @@ namespaceblock = vcat $
|
||||
will lead to a scope error. Putting each one in a different `namespace`
|
||||
block can help bypass this issue by ensuring that they are assigned distinct
|
||||
fully qualified names. For instance
|
||||
```
|
||||
```idris
|
||||
module M
|
||||
|
||||
namespace Zero
|
||||
@ -440,7 +440,7 @@ rewriteeq = vcat $
|
||||
on the left hand side of the equality by that on the right hand side.
|
||||
For instance, if we know that the types `a` and `b` are propositionally
|
||||
equal, we can return a value of type `a` as if it had type `b`:
|
||||
```
|
||||
```idris
|
||||
transport : a === b -> a -> b
|
||||
transport eq x = rewrite sym eq in x
|
||||
```
|
||||
@ -468,7 +468,7 @@ withabstraction = vcat $
|
||||
`eq` an equality proof stating that the `True`/`False` patterns in the further
|
||||
clauses are equal to the result of evaluating `p x`. This is the reason why
|
||||
we can successfully form `(x ** eq)` in the `True` branch.
|
||||
```
|
||||
```idris
|
||||
filter : (p : a -> Bool) -> List a -> List (x : a ** p x === True)
|
||||
filter p [] = []
|
||||
filter p (x :: xs) with (p x) proof eq
|
||||
@ -492,7 +492,7 @@ letbinding = vcat $
|
||||
|
||||
For instance, in the following definition the let-bound value `square`
|
||||
ensures that `n * n` is only computed once:
|
||||
```
|
||||
```idris
|
||||
power4 : Nat -> Nat
|
||||
power4 n = let square := n * n in square * square
|
||||
```
|
||||
@ -502,7 +502,7 @@ letbinding = vcat $
|
||||
an alternative list of clauses can be given using the `|` separator.
|
||||
For instance, we can shortcut the `square * square` computation in case
|
||||
the returned value is 0 like so:
|
||||
```
|
||||
```idris
|
||||
power4 : Nat -> Nat
|
||||
power4 n = let square@(S _) := n * n
|
||||
| Z => Z
|
||||
|
Loading…
Reference in New Issue
Block a user