Fill in missing Nat proofs

This commit is contained in:
Nick Drozd 2020-06-11 17:06:05 -05:00
parent 3b0496b8ab
commit b096062858

View File

@ -519,9 +519,9 @@ maximumCommutative Z (S _) = Refl
maximumCommutative (S _) Z = Refl
maximumCommutative (S k) (S j) = rewrite maximumCommutative k j in Refl
-- maximumIdempotent : (n : Nat) -> maximum n n = n
-- maximumIdempotent Z = Refl
-- maximumIdempotent (S k) = cong $ maximumIdempotent k
maximumIdempotent : (n : Nat) -> maximum n n = n
maximumIdempotent Z = Refl
maximumIdempotent (S k) = cong S $ maximumIdempotent k
minimumAssociative : (l, c, r : Nat) ->
minimum l (minimum c r) = minimum (minimum l c) r
@ -536,9 +536,9 @@ minimumCommutative Z (S _) = Refl
minimumCommutative (S _) Z = Refl
minimumCommutative (S k) (S j) = rewrite minimumCommutative k j in Refl
-- minimumIdempotent : (n : Nat) -> minimum n n = n
-- minimumIdempotent Z = Refl
-- minimumIdempotent (S k) = cong (minimumIdempotent k)
minimumIdempotent : (n : Nat) -> minimum n n = n
minimumIdempotent Z = Refl
minimumIdempotent (S k) = cong S $ minimumIdempotent k
minimumZeroZeroLeft : (left : Nat) -> minimum left 0 = Z
minimumZeroZeroLeft left = rewrite minimumCommutative left 0 in Refl
@ -554,18 +554,18 @@ maximumSuccSucc : (left, right : Nat) ->
S (maximum left right) = maximum (S left) (S right)
maximumSuccSucc _ _ = Refl
-- sucMaxL : (l : Nat) -> maximum (S l) l = (S l)
-- sucMaxL Z = Refl
-- sucMaxL (S l) = cong $ sucMaxL l
sucMaxL : (l : Nat) -> maximum (S l) l = (S l)
sucMaxL Z = Refl
sucMaxL (S l) = cong S $ sucMaxL l
-- sucMaxR : (l : Nat) -> maximum l (S l) = (S l)
-- sucMaxR Z = Refl
-- sucMaxR (S l) = cong $ sucMaxR l
sucMaxR : (l : Nat) -> maximum l (S l) = (S l)
sucMaxR Z = Refl
sucMaxR (S l) = cong S $ sucMaxR l
-- sucMinL : (l : Nat) -> minimum (S l) l = l
-- sucMinL Z = Refl
-- sucMinL (S l) = cong $ sucMinL l
sucMinL : (l : Nat) -> minimum (S l) l = l
sucMinL Z = Refl
sucMinL (S l) = cong S $ sucMinL l
-- sucMinR : (l : Nat) -> minimum l (S l) = l
-- sucMinR Z = Refl
-- sucMinR (S l) = cong $ sucMinR l
sucMinR : (l : Nat) -> minimum l (S l) = l
sucMinR Z = Refl
sucMinR (S l) = cong S $ sucMinR l