mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-11-24 06:52:19 +03:00
Fill in missing Nat proofs
This commit is contained in:
parent
3b0496b8ab
commit
b096062858
@ -519,9 +519,9 @@ maximumCommutative Z (S _) = Refl
|
||||
maximumCommutative (S _) Z = Refl
|
||||
maximumCommutative (S k) (S j) = rewrite maximumCommutative k j in Refl
|
||||
|
||||
-- maximumIdempotent : (n : Nat) -> maximum n n = n
|
||||
-- maximumIdempotent Z = Refl
|
||||
-- maximumIdempotent (S k) = cong $ maximumIdempotent k
|
||||
maximumIdempotent : (n : Nat) -> maximum n n = n
|
||||
maximumIdempotent Z = Refl
|
||||
maximumIdempotent (S k) = cong S $ maximumIdempotent k
|
||||
|
||||
minimumAssociative : (l, c, r : Nat) ->
|
||||
minimum l (minimum c r) = minimum (minimum l c) r
|
||||
@ -536,9 +536,9 @@ minimumCommutative Z (S _) = Refl
|
||||
minimumCommutative (S _) Z = Refl
|
||||
minimumCommutative (S k) (S j) = rewrite minimumCommutative k j in Refl
|
||||
|
||||
-- minimumIdempotent : (n : Nat) -> minimum n n = n
|
||||
-- minimumIdempotent Z = Refl
|
||||
-- minimumIdempotent (S k) = cong (minimumIdempotent k)
|
||||
minimumIdempotent : (n : Nat) -> minimum n n = n
|
||||
minimumIdempotent Z = Refl
|
||||
minimumIdempotent (S k) = cong S $ minimumIdempotent k
|
||||
|
||||
minimumZeroZeroLeft : (left : Nat) -> minimum left 0 = Z
|
||||
minimumZeroZeroLeft left = rewrite minimumCommutative left 0 in Refl
|
||||
@ -554,18 +554,18 @@ maximumSuccSucc : (left, right : Nat) ->
|
||||
S (maximum left right) = maximum (S left) (S right)
|
||||
maximumSuccSucc _ _ = Refl
|
||||
|
||||
-- sucMaxL : (l : Nat) -> maximum (S l) l = (S l)
|
||||
-- sucMaxL Z = Refl
|
||||
-- sucMaxL (S l) = cong $ sucMaxL l
|
||||
sucMaxL : (l : Nat) -> maximum (S l) l = (S l)
|
||||
sucMaxL Z = Refl
|
||||
sucMaxL (S l) = cong S $ sucMaxL l
|
||||
|
||||
-- sucMaxR : (l : Nat) -> maximum l (S l) = (S l)
|
||||
-- sucMaxR Z = Refl
|
||||
-- sucMaxR (S l) = cong $ sucMaxR l
|
||||
sucMaxR : (l : Nat) -> maximum l (S l) = (S l)
|
||||
sucMaxR Z = Refl
|
||||
sucMaxR (S l) = cong S $ sucMaxR l
|
||||
|
||||
-- sucMinL : (l : Nat) -> minimum (S l) l = l
|
||||
-- sucMinL Z = Refl
|
||||
-- sucMinL (S l) = cong $ sucMinL l
|
||||
sucMinL : (l : Nat) -> minimum (S l) l = l
|
||||
sucMinL Z = Refl
|
||||
sucMinL (S l) = cong S $ sucMinL l
|
||||
|
||||
-- sucMinR : (l : Nat) -> minimum l (S l) = l
|
||||
-- sucMinR Z = Refl
|
||||
-- sucMinR (S l) = cong $ sucMinR l
|
||||
sucMinR : (l : Nat) -> minimum l (S l) = l
|
||||
sucMinR Z = Refl
|
||||
sucMinR (S l) = cong S $ sucMinR l
|
||||
|
Loading…
Reference in New Issue
Block a user