mirror of
https://github.com/idris-lang/Idris2.git
synced 2025-01-04 14:18:26 +03:00
Implement standard List operations for SnocLists (#2364)
Co-authored-by: Ohad Kammar <ohad.kammar@ed.ac.uk>
This commit is contained in:
parent
319c7f7b86
commit
d08b827f49
@ -217,6 +217,12 @@ toListCast (x::xs) = do
|
||||
rewrite toListCast xs
|
||||
Refl
|
||||
|
||||
||| Append an element to the head of a snoc-list.
|
||||
||| Note: Traverses the snoc-list, linear time complexity
|
||||
public export
|
||||
cons : a -> SnocList a -> SnocList a
|
||||
cons x sx = [< x] ++ sx
|
||||
|
||||
--- Folds ---
|
||||
|
||||
export
|
||||
|
139
libs/base/Data/SnocList/Operations.idr
Normal file
139
libs/base/Data/SnocList/Operations.idr
Normal file
@ -0,0 +1,139 @@
|
||||
||| Operations on `SnocList`s, analogous to the `List` ones.
|
||||
||| Depending on your style of programming, these might cause
|
||||
||| ambiguities, so import with care
|
||||
module Data.SnocList.Operations
|
||||
|
||||
import Data.SnocList
|
||||
import Data.List
|
||||
import Data.Nat
|
||||
import Syntax.PreorderReasoning
|
||||
import Syntax.PreorderReasoning.Generic
|
||||
|
||||
%default total
|
||||
|
||||
||| Take `n` last elements from `sx`, returning the whole list if
|
||||
||| `n` >= length `sx`.
|
||||
|||
|
||||
||| @ n the number of elements to take
|
||||
||| @ sx the snoc-list to take the elements from
|
||||
public export
|
||||
takeTail : (n : Nat) -> (sx : SnocList a) -> SnocList a
|
||||
takeTail (S n) (sx :< x) = takeTail n sx :< x
|
||||
takeTail _ _ = [<]
|
||||
|
||||
||| Remove `n` last elements from `xs`, returning the empty list if
|
||||
||| `n >= length xs`
|
||||
|||
|
||||
||| @ n the number of elements to remove
|
||||
||| @ xs the list to drop the elements from
|
||||
public export
|
||||
dropTail : (n : Nat) -> (sx : SnocList a) -> SnocList a
|
||||
dropTail 0 sx = sx
|
||||
dropTail (S n) [<] = [<]
|
||||
dropTail (S n) (sx :< x) = dropTail n sx
|
||||
|
||||
public export
|
||||
concatDropTailTakeTail : (n : Nat) -> (sx : SnocList a) ->
|
||||
dropTail n sx ++ takeTail n sx === sx
|
||||
concatDropTailTakeTail 0 (sx :< x) = Refl
|
||||
concatDropTailTakeTail (S n) (sx :< x) = cong (:< x) $ concatDropTailTakeTail n sx
|
||||
concatDropTailTakeTail 0 [<] = Refl
|
||||
concatDropTailTakeTail (S k) [<] = Refl
|
||||
|
||||
|
||||
{- We can traverse a list while retaining both sides by decomposing it
|
||||
into a snoc-list and a cons-list
|
||||
-}
|
||||
|
||||
||| Shift `n` elements from the beginning of `xs` to the end of `sx`,
|
||||
||| returning the same lists if `n` >= length `xs`.
|
||||
|||
|
||||
||| @ n the number of elements to take
|
||||
||| @ sx the snoc-list to append onto
|
||||
||| @ xs the list to take the elements from
|
||||
public export
|
||||
splitOntoLeft : (n : Nat) -> (sx : SnocList a) -> (xs : List a) -> (SnocList a, List a)
|
||||
splitOntoLeft (S n) sx (x :: xs) = splitOntoLeft n (sx :< x) xs
|
||||
splitOntoLeft _ sx xs = (sx, xs)
|
||||
|
||||
||| Shift `n` elements from the end of `sx` to the beginning of `xs`,
|
||||
||| returning the same lists if `n` >= length `sx`.
|
||||
|||
|
||||
||| @ n the number of elements to take
|
||||
||| @ sx the snoc-list to take the elements from
|
||||
||| @ xs the list to append onto
|
||||
public export
|
||||
splitOntoRight : (n : Nat) -> (sx : SnocList a) -> (xs : List a) -> (SnocList a, List a)
|
||||
splitOntoRight (S n) (sx :< x) xs = splitOntoRight n sx (x :: xs)
|
||||
splitOntoRight _ sx xs = (sx, xs)
|
||||
|
||||
export
|
||||
splitOntoRightInvariant : (n : Nat) -> (sx : SnocList a) -> (xs : List a) ->
|
||||
fst (splitOntoRight n sx xs) <>< snd (splitOntoRight n sx xs) === sx <>< xs
|
||||
splitOntoRightInvariant (S n) (sx :< x) xs = splitOntoRightInvariant n sx (x :: xs)
|
||||
splitOntoRightInvariant 0 sx xs = Refl
|
||||
splitOntoRightInvariant (S k) [<] xs = Refl
|
||||
|
||||
export
|
||||
splitOntoRightSpec : (n : Nat) -> (sx : SnocList a) -> (xs : List a) ->
|
||||
(fst (splitOntoRight n sx xs) === dropTail n sx, snd (splitOntoRight n sx xs) = takeTail n sx <>> xs)
|
||||
splitOntoRightSpec (S k) (sx :< x) xs = splitOntoRightSpec k sx (x :: xs)
|
||||
splitOntoRightSpec 0 sx xs = (Refl, Refl)
|
||||
splitOntoRightSpec (S k) [<] xs = (Refl, Refl)
|
||||
|
||||
export
|
||||
splitOntoLeftSpec : (n : Nat) -> (sx : SnocList a) -> (xs : List a) ->
|
||||
(fst (splitOntoLeft n sx xs) === sx <>< take n xs, snd (splitOntoLeft n sx xs) = drop n xs)
|
||||
splitOntoLeftSpec (S k) sx (x :: xs) = splitOntoLeftSpec k (sx :< x) xs
|
||||
splitOntoLeftSpec 0 sx xs = (Refl, Refl)
|
||||
splitOntoLeftSpec (S k) sx [] = (Refl, Refl)
|
||||
|
||||
export
|
||||
lengthHomomorphism : (sx,sy : SnocList a) -> length (sx ++ sy) === length sx + length sy
|
||||
lengthHomomorphism sx [<] = sym $ plusZeroRightNeutral _
|
||||
lengthHomomorphism sx (sy :< x) = Calc $
|
||||
|~ 1 + (length (sx ++ sy))
|
||||
~~ 1 + (length sx + length sy) ...(cong (1+) $ lengthHomomorphism _ _)
|
||||
~~ length sx + (1 + length sy) ...(plusSuccRightSucc _ _)
|
||||
|
||||
-- cons-list operations on snoc-lists
|
||||
|
||||
||| Take `n` first elements from `sx`, returning the whole list if
|
||||
||| `n` >= length `sx`.
|
||||
|||
|
||||
||| @ n the number of elements to take
|
||||
||| @ sx the snoc-list to take the elements from
|
||||
|||
|
||||
||| Note: traverses the whole the input list, so linear in `n` and
|
||||
||| `length sx`
|
||||
public export
|
||||
take : (n : Nat) -> (sx : SnocList a) -> SnocList a
|
||||
take n sx = dropTail (length sx `minus` n) sx
|
||||
|
||||
||| Drop `n` first elements from `sx`, returning an empty list if
|
||||
||| `n` >= length `sx`.
|
||||
|||
|
||||
||| @ n the number of elements to drop
|
||||
||| @ sx the snoc-list to drop the elements from
|
||||
|||
|
||||
||| Note: traverses the whole the input list, so linear in `n` and
|
||||
||| `length sx`
|
||||
public export
|
||||
drop : (n : Nat) -> (sx : SnocList a) -> SnocList a
|
||||
drop n sx = takeTail (length sx `minus` n) sx
|
||||
|
||||
public export
|
||||
data NonEmpty : SnocList a -> Type where
|
||||
IsSnoc : NonEmpty (sx :< x)
|
||||
|
||||
public export
|
||||
last : (sx : SnocList a) -> {auto 0 nonEmpty : NonEmpty sx} -> a
|
||||
last (sx :< x) {nonEmpty = IsSnoc} = x
|
||||
|
||||
public export
|
||||
intersectBy : (a -> a -> Bool) -> SnocList a -> SnocList a -> SnocList a
|
||||
intersectBy eq xs ys = [x | x <- xs, any (eq x) ys]
|
||||
|
||||
public export
|
||||
intersect : Eq a => SnocList a -> SnocList a -> SnocList a
|
||||
intersect = intersectBy (==)
|
@ -36,7 +36,7 @@ namespace Any
|
||||
uninhabited (There y) = uninhabited y
|
||||
|
||||
||| Modify the property given a pointwise function
|
||||
export
|
||||
public export
|
||||
mapProperty : (f : {0 x : a} -> p x -> q x) -> Any p l -> Any q l
|
||||
mapProperty f (Here p) = Here (f p)
|
||||
mapProperty f (There p) = There (mapProperty f p)
|
||||
@ -96,7 +96,7 @@ namespace All
|
||||
uninhabited @{Right _} (pxs :< px) = uninhabited pxs
|
||||
|
||||
||| Modify the property given a pointwise function
|
||||
export
|
||||
public export
|
||||
mapProperty : (f : {0 x : a} -> p x -> q x) -> All p l -> All q l
|
||||
mapProperty f [<] = [<]
|
||||
mapProperty f (pxs :< px) = mapProperty f pxs :< f px
|
||||
|
@ -55,6 +55,7 @@ modules = Control.App,
|
||||
Data.SnocList,
|
||||
Data.SnocList.Elem,
|
||||
Data.SnocList.Quantifiers,
|
||||
Data.SnocList.Operations,
|
||||
Data.List.Elem,
|
||||
Data.List.Views,
|
||||
Data.List.Quantifiers,
|
||||
|
Loading…
Reference in New Issue
Block a user