Remove unsolved holes from base.

Having unsolved holes in a 'core' library unneccessarily pollutes the list of holes shown to the user.
Thus, having unfilled holes in a 'core' library is not right.
These constructs can be re-added once the holes have been filled in.
This commit is contained in:
Jan de Muijnck-Hughes 2020-06-12 10:39:57 +01:00
parent d86d96f35a
commit da81146388

View File

@ -466,8 +466,8 @@ multDistributesOverMinusRight left centre right =
-- power proofs
multPowerPowerPlus : (base, exp, exp' : Nat) ->
power base (exp + exp') = (power base exp) * (power base exp')
-- multPowerPowerPlus : (base, exp, exp' : Nat) ->
-- power base (exp + exp') = (power base exp) * (power base exp')
-- multPowerPowerPlus base Z exp' =
-- rewrite sym $ plusZeroRightNeutral (power base exp') in Refl
-- multPowerPowerPlus base (S exp) exp' =
@ -475,21 +475,21 @@ multPowerPowerPlus : (base, exp, exp' : Nat) ->
-- rewrite sym $ multAssociative base (power base exp) (power base exp') in
-- Refl
powerOneNeutral : (base : Nat) -> power base 1 = base
powerOneNeutral base = rewrite multCommutative base 1 in multOneLeftNeutral base
powerOneSuccOne : (exp : Nat) -> power 1 exp = 1
powerOneSuccOne Z = Refl
powerOneSuccOne (S exp) = rewrite powerOneSuccOne exp in Refl
powerPowerMultPower : (base, exp, exp' : Nat) ->
power (power base exp) exp' = power base (exp * exp')
powerPowerMultPower _ exp Z = rewrite multZeroRightZero exp in Refl
powerPowerMultPower base exp (S exp') =
rewrite powerPowerMultPower base exp exp' in
rewrite multRightSuccPlus exp exp' in
rewrite sym $ multPowerPowerPlus base exp (exp * exp') in
Refl
--powerOneNeutral : (base : Nat) -> power base 1 = base
--powerOneNeutral base = rewrite multCommutative base 1 in multOneLeftNeutral base
--
--powerOneSuccOne : (exp : Nat) -> power 1 exp = 1
--powerOneSuccOne Z = Refl
--powerOneSuccOne (S exp) = rewrite powerOneSuccOne exp in Refl
--
--powerPowerMultPower : (base, exp, exp' : Nat) ->
-- power (power base exp) exp' = power base (exp * exp')
--powerPowerMultPower _ exp Z = rewrite multZeroRightZero exp in Refl
--powerPowerMultPower base exp (S exp') =
-- rewrite powerPowerMultPower base exp exp' in
-- rewrite multRightSuccPlus exp exp' in
-- rewrite sym $ multPowerPowerPlus base exp (exp * exp') in
-- Refl
-- minimum / maximum proofs
@ -506,7 +506,7 @@ maximumCommutative Z (S _) = Refl
maximumCommutative (S _) Z = Refl
maximumCommutative (S k) (S j) = rewrite maximumCommutative k j in Refl
maximumIdempotent : (n : Nat) -> maximum n n = n
-- maximumIdempotent : (n : Nat) -> maximum n n = n
-- maximumIdempotent Z = Refl
-- maximumIdempotent (S k) = cong $ maximumIdempotent k
@ -523,7 +523,7 @@ minimumCommutative Z (S _) = Refl
minimumCommutative (S _) Z = Refl
minimumCommutative (S k) (S j) = rewrite minimumCommutative k j in Refl
minimumIdempotent : (n : Nat) -> minimum n n = n
-- minimumIdempotent : (n : Nat) -> minimum n n = n
-- minimumIdempotent Z = Refl
-- minimumIdempotent (S k) = cong (minimumIdempotent k)
@ -541,18 +541,18 @@ maximumSuccSucc : (left, right : Nat) ->
S (maximum left right) = maximum (S left) (S right)
maximumSuccSucc _ _ = Refl
sucMaxL : (l : Nat) -> maximum (S l) l = (S l)
-- sucMaxL : (l : Nat) -> maximum (S l) l = (S l)
-- sucMaxL Z = Refl
-- sucMaxL (S l) = cong $ sucMaxL l
sucMaxR : (l : Nat) -> maximum l (S l) = (S l)
-- sucMaxR : (l : Nat) -> maximum l (S l) = (S l)
-- sucMaxR Z = Refl
-- sucMaxR (S l) = cong $ sucMaxR l
sucMinL : (l : Nat) -> minimum (S l) l = l
-- sucMinL : (l : Nat) -> minimum (S l) l = l
-- sucMinL Z = Refl
-- sucMinL (S l) = cong $ sucMinL l
sucMinR : (l : Nat) -> minimum l (S l) = l
-- sucMinR : (l : Nat) -> minimum l (S l) = l
-- sucMinR Z = Refl
-- sucMinR (S l) = cong $ sucMinR l