mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-11-24 06:52:19 +03:00
[ papers ] Fix things by adding a parameter block
The original Agda code declares the module with L and Sigma (Lbls and Sts) with type Set. This is apparently close to a parameter block, which solves the unification error I was having with `now`! Huge thanks to gallais for showing me that!
This commit is contained in:
parent
0c72f83fe8
commit
db30dd8d4a
@ -44,258 +44,258 @@ pComp (TD transFn1 iState1) (TD transFn2 iState2) =
|
||||
map (\ (l1', st') => ((l1', l2), st')) (transFn1 (l1, st)) ++
|
||||
map (\ (l2', st') => ((l1, l2'), st')) (transFn2 (l2, st)))
|
||||
|
||||
||| A computation tree (corecursive rose tree?)
|
||||
data CT : Type where
|
||||
At : {Lbls, Sts : Type} -> (Lbls, Sts) -> Lazy (List CT) -> CT
|
||||
parameters (Lbls, Sts : Type)
|
||||
||| A computation tree (corecursive rose tree?)
|
||||
data CT : Type where
|
||||
At : (Lbls, Sts) -> Lazy (List CT) -> CT
|
||||
|
||||
||| Given a transition diagram and a starting value for the shared state,
|
||||
||| construct the computation tree of the given transition diagram.
|
||||
covering
|
||||
model : {Lbls, Sts : _} -> Diagram Lbls Sts -> (st : Sts) -> CT
|
||||
model (TD transFn iState) st = follow (iState, st)
|
||||
where
|
||||
follow : (Lbls, Sts) -> CT
|
||||
||| Given a transition diagram and a starting value for the shared state,
|
||||
||| construct the computation tree of the given transition diagram.
|
||||
covering
|
||||
model : Diagram Lbls Sts -> (st : Sts) -> CT
|
||||
model (TD transFn iState) st = follow (iState, st)
|
||||
where
|
||||
follow : (Lbls, Sts) -> CT
|
||||
|
||||
followAll : List (Lbls, Sts) -> List CT
|
||||
followAll : List (Lbls, Sts) -> List CT
|
||||
|
||||
follow st = At st (followAll (transFn st))
|
||||
|
||||
followAll [] = []
|
||||
followAll (st :: sts) = follow st :: followAll sts
|
||||
|
||||
|
||||
-- different formulation of LTE, see also:
|
||||
-- https://agda.github.io/agda-stdlib/Data.Nat.Base.html#4636
|
||||
-- thanks @gallais!
|
||||
public export
|
||||
data LTE' : (n : Nat) -> (m : Nat) -> Type where
|
||||
LTERefl : LTE' m m
|
||||
LTEStep : LTE' n m -> LTE' n (S m)
|
||||
|
||||
||| Convert LTE' to LTE
|
||||
lteAltToLTE : {m : _} -> LTE' n m -> LTE n m
|
||||
lteAltToLTE {m=0} LTERefl = LTEZero
|
||||
lteAltToLTE {m=(S k)} LTERefl = LTESucc (lteAltToLTE LTERefl)
|
||||
lteAltToLTE {m=(S m)} (LTEStep s) = lteSuccRight (lteAltToLTE s)
|
||||
|
||||
lteAltIsLTE : LTE' n m === LTE n m
|
||||
|
||||
||| A formula has a bound (for Bounded Model Checking; BMC) and a computation
|
||||
||| tree to check against.
|
||||
public export
|
||||
Formula : Type
|
||||
Formula = (depth : Nat) -> (tree : CT) -> Type
|
||||
|
||||
||| A tree models a formula if there exists a depth d0 for which the property
|
||||
||| holds for all depths d >= d0.
|
||||
-- Called "satisfies" in the paper
|
||||
public export
|
||||
data Models : (m : CT) -> (f : Formula) -> Type where
|
||||
ItModels : (d0 : Nat) -> ({d : Nat} -> (d0 `LTE'` d) -> f d m) -> Models m f
|
||||
|
||||
------------------------------------------------------------------------
|
||||
-- Depth invariance
|
||||
|
||||
||| Depth-invariance (DI) is when a formula cannot be falsified by increasing
|
||||
||| the search depth.
|
||||
public export
|
||||
record DepthInv (f : Formula) where
|
||||
constructor DI
|
||||
prf : {n : Nat} -> {m : CT} -> f n m -> f (S n) m
|
||||
|
||||
||| A DI-formula holding for a specific depth means the CT models the formula in
|
||||
||| general (we could increase the search depth and still be fine).
|
||||
public export
|
||||
diModels : {n : Nat} -> {m : CT} -> {f : Formula} -> {auto d : DepthInv f}
|
||||
-> (p : f n m) -> Models m f
|
||||
diModels {n} {f} {m} @{(DI diPrf)} p = ItModels n (\ q => diLTE p q)
|
||||
where
|
||||
diLTE : {n, n' : _} -> f n m -> (ltePrf' : n `LTE'` n') -> f n' m
|
||||
diLTE p LTERefl = p
|
||||
diLTE p (LTEStep x) = diPrf (diLTE p x)
|
||||
|
||||
||| A trivially true (TT) formula.
|
||||
data TrueF : Formula where
|
||||
TT : {n : _} -> {m : _} -> TrueF n m
|
||||
|
||||
||| A tt formula is depth-invariant.
|
||||
TrueDI : DepthInv TrueF
|
||||
TrueDI = DI (const TT)
|
||||
|
||||
------------------------------------------------------------------------
|
||||
-- Guards
|
||||
|
||||
namespace Guards
|
||||
||| The formula `Guarded g` is true when the current state satisfies the guard
|
||||
||| `g`.
|
||||
public export
|
||||
data Guarded : (g : (st : Sts) -> (l : Lbls) -> Type) -> Formula where
|
||||
Here : {st : _} -> {l : _}
|
||||
-> {ms : Lazy (List CT)} -> {depth : Nat}
|
||||
-> {g : _}
|
||||
-> (guardOK : g st l)
|
||||
-> Guarded g depth (At (l, st) ms)
|
||||
|
||||
||| Guarded expressions are depth-inv as the guard does not care about depth.
|
||||
public export
|
||||
diGuarded : {p : _} -> DepthInv (Guarded p)
|
||||
diGuarded {p} = DI prf
|
||||
where
|
||||
prf : {n : _} -> {m : _} -> Guarded p n m -> Guarded p (S n) m
|
||||
prf (Here x) = Here x -- can be interactively generated!
|
||||
|
||||
--- public export
|
||||
--- data Guarded : (g : (st : Sts) -> (l : Lbls) -> Type) -> Formula where
|
||||
--- Here : {st : _} -> {l : _}
|
||||
--- -> {ms : Lazy (List CT)} -> {depth : Nat}
|
||||
--- -> g st l
|
||||
--- -> Guarded g depth (At (l, st) ms)
|
||||
---
|
||||
--- public export
|
||||
--- diGuarded : {p : _} -> DepthInv (Guarded (p st l))
|
||||
--- diGuarded {p} = DI prf
|
||||
--- where
|
||||
--- prf : {n : _} -> {m : _} -> Guarded (p st l) n m -> Guarded (p st l) (S n) m
|
||||
--- prf (Here x) = Here {depth=(S n)} x
|
||||
|
||||
------------------------------------------------------------------------
|
||||
-- Conjunction / And
|
||||
||| Conjunction of two `Formula`s
|
||||
public export
|
||||
record AND' (f, g : Formula) (depth : Nat) (tree : CT) where
|
||||
constructor MkAND' --: {n : _} -> {m : _} -> f n m -> g n m -> (AND' f g) n m
|
||||
fst : f depth tree
|
||||
snd : g depth tree
|
||||
|
||||
||| Conjunction is depth-invariant
|
||||
public export
|
||||
diAND' : {f, g : Formula}
|
||||
-> {auto p : DepthInv f}
|
||||
-> {auto q : DepthInv g}
|
||||
-> DepthInv (AND' f g)
|
||||
diAND' @{(DI diP)} @{(DI diQ)} = DI (\ a' => MkAND' (diP a'.fst) (diQ a'.snd))
|
||||
-- diAND' @{(DI diP)} @{(DI diQ)} = DI (\ (MkAND' a b) => MkAND' (diP a) (diQ b))
|
||||
|
||||
------------------------------------------------------------------------
|
||||
-- Always Until
|
||||
|
||||
namespace AU
|
||||
---- -- FIXME: HOW??
|
||||
---- data RTAll : {a : Type} -> (_ : (a -> Type)) -> List a -> Type where
|
||||
---- Nil : {p : (a -> Type)}
|
||||
---- -> RTAll p []
|
||||
---- (::) : {x : a} -> {xs : List a} -> {p : (a -> Type)}
|
||||
---- -> p x -> RTAll p xs -> RTAll p (x :: xs)
|
||||
|
||||
---- mapProperty : {a : _} -> {p : _} -> {q : _}
|
||||
---- -> (p a -> q a) -> RTAll p l -> RTAll q l
|
||||
---- mapProperty f [] = []
|
||||
---- mapProperty f (p :: ps) = f p :: mapProperty f ps
|
||||
|
||||
||| A proof that for all paths in the tree, f holds until g does.
|
||||
public export
|
||||
data AlwaysUntil : (f, g : Formula) -> Formula where
|
||||
||| We've found a place where g holds, so we're done.
|
||||
Here : {t : _} -> {n : _} -> g n t -> AlwaysUntil f g (S n) t
|
||||
|
||||
follow st = At st (followAll (transFn st))
|
||||
||| If f still holds and we can recursively show that g holds for all
|
||||
||| possible subpaths in the CT, then all branches have f hold until g does.
|
||||
There : {st : _} -> {lazyCTs : _} -> {n : _}
|
||||
-> f n (At st lazyCTs)
|
||||
---- -> RTAll ((AlwaysUntil f g) n) lazyCTs
|
||||
-> All ((AlwaysUntil f g) n) lazyCTs
|
||||
-> AlwaysUntil f g (S n) (At st lazyCTs)
|
||||
|
||||
followAll [] = []
|
||||
followAll (st :: sts) = follow st :: followAll sts
|
||||
|
||||
||| Provided `f` and `g` are depth-invariant, AlwaysUntil is depth-invariant
|
||||
public export
|
||||
diAU : {f,g : _} -> {auto p : DepthInv f} -> {auto q : DepthInv g}
|
||||
-> DepthInv (AlwaysUntil f g)
|
||||
diAU @{(DI diP)} @{(DI diQ)} = DI prf
|
||||
where
|
||||
-- lemma : {d : _} -> RTAll (AlwaysUntil f g d) lt -> RTAll (AlwaysUntil f g (S d)) lt
|
||||
lemma : {d : _} -> {lt : _}
|
||||
---- -> RTAll (AlwaysUntil f g d) lt -> RTAll (AlwaysUntil f g (S d)) lt
|
||||
-> All (AlwaysUntil f g d) lt -> All (AlwaysUntil f g (S d)) lt
|
||||
|
||||
-- different formulation of LTE, see also:
|
||||
-- https://agda.github.io/agda-stdlib/Data.Nat.Base.html#4636
|
||||
-- thanks @gallais!
|
||||
public export
|
||||
data LTE' : (n : Nat) -> (m : Nat) -> Type where
|
||||
LTERefl : LTE' m m
|
||||
LTEStep : LTE' n m -> LTE' n (S m)
|
||||
prf : {d : _} -> {t : _} -> AlwaysUntil f g d t -> AlwaysUntil f g (S d) t
|
||||
|
||||
||| Convert LTE' to LTE
|
||||
lteAltToLTE : {m : _} -> LTE' n m -> LTE n m
|
||||
lteAltToLTE {m=0} LTERefl = LTEZero
|
||||
lteAltToLTE {m=(S k)} LTERefl = LTESucc (lteAltToLTE LTERefl)
|
||||
lteAltToLTE {m=(S m)} (LTEStep s) = lteSuccRight (lteAltToLTE s)
|
||||
lemma [] = []
|
||||
lemma (au :: aus) = (prf au) :: ?lemma_rhs_1 -- TODO: mapProperty prf xs
|
||||
|
||||
lteAltIsLTE : LTE' n m === LTE n m
|
||||
prf (Here au) = Here (diQ au)
|
||||
prf (There au aus) = There (diP au) (lemma aus)
|
||||
|
||||
||| A formula has a bound (for Bounded Model Checking; BMC) and a computation
|
||||
||| tree to check against.
|
||||
public export
|
||||
Formula : Type
|
||||
Formula = (depth : Nat) -> (tree : CT) -> Type
|
||||
------------------------------------------------------------------------
|
||||
-- Exists Until
|
||||
|
||||
||| A tree models a formula if there exists a depth d0 for which the property
|
||||
||| holds for all depths d >= d0.
|
||||
-- Called "satisfies" in the paper
|
||||
public export
|
||||
data Models : (m : CT) -> (f : Formula) -> Type where
|
||||
ItModels : (d0 : Nat) -> ({d : Nat} -> (d0 `LTE'` d) -> f d m) -> Models m f
|
||||
namespace EU
|
||||
||| A proof that somewhere in the tree, there is a path for which f holds
|
||||
||| until g does.
|
||||
public export
|
||||
data ExistsUntil : (f, g : Formula) -> Formula where
|
||||
||| If g holds here, we've found a branch where we can stop.
|
||||
Here : {t : _} -> {n : _} -> g n t -> ExistsUntil f g (S n) t
|
||||
|
||||
------------------------------------------------------------------------
|
||||
-- Depth invariance
|
||||
||| If f holds here and any of the further branches have a g, then there is
|
||||
||| a branch where f holds until g does.
|
||||
There : {st : _} -> {ms : _} -> {n : _}
|
||||
-> f n (At st ms)
|
||||
-> Any (ExistsUntil f g n) ms
|
||||
-> ExistsUntil f g (S n) (At st ms)
|
||||
|
||||
||| Depth-invariance (DI) is when a formula cannot be falsified by increasing
|
||||
||| the search depth.
|
||||
public export
|
||||
record DepthInv (f : Formula) where
|
||||
constructor DI
|
||||
prf : {n : Nat} -> {m : CT} -> f n m -> f (S n) m
|
||||
||| Provided `f` and `g` are depth-invariant, ExistsUntil is depth-invariant.
|
||||
public export
|
||||
diEU : {f, g : _} -> {auto p : DepthInv f} -> {auto q : DepthInv g}
|
||||
-> DepthInv (ExistsUntil f g)
|
||||
diEU @{(DI diP)} @{(DI diQ)} = DI prf
|
||||
where
|
||||
prf : {d : _} -> {t : _}
|
||||
-> ExistsUntil f g d t
|
||||
-> ExistsUntil f g (S d) t
|
||||
prf (Here eu) = Here (diQ eu)
|
||||
prf (There eu eus) = There (diP eu) ?prf_rhs_1 -- TODO: same err as AU
|
||||
|
||||
||| A DI-formula holding for a specific depth means the CT models the formula in
|
||||
||| general (we could increase the search depth and still be fine).
|
||||
public export
|
||||
diModels : {n : Nat} -> {m : CT} -> {f : Formula} -> {auto d : DepthInv f}
|
||||
-> (p : f n m) -> Models m f
|
||||
diModels {n} {f} {m} @{(DI diPrf)} p = ItModels n (\ q => diLTE p q)
|
||||
where
|
||||
diLTE : {n, n' : _} -> f n m -> (ltePrf' : n `LTE'` n') -> f n' m
|
||||
diLTE p LTERefl = p
|
||||
diLTE p (LTEStep x) = diPrf (diLTE p x)
|
||||
------------------------------------------------------------------------
|
||||
-- Completed, and the stronger forms of Global
|
||||
|
||||
||| A trivially true (TT) formula.
|
||||
data TrueF : Formula where
|
||||
TT : {n : _} -> {m : _} -> TrueF n m
|
||||
|
||||
||| A tt formula is depth-invariant.
|
||||
TrueDI : DepthInv TrueF
|
||||
TrueDI = DI (const TT)
|
||||
|
||||
------------------------------------------------------------------------
|
||||
-- Guards
|
||||
|
||||
namespace Guards
|
||||
||| The formula `Guarded g` is true when the current state satisfies the guard
|
||||
||| `g`.
|
||||
||| A completed formula is a formula for which no more successor states exist.
|
||||
public export
|
||||
data Guarded : {Sts, Lbls : _} -> (g : (st : Sts) -> (l : Lbls) -> Type) -> Formula where
|
||||
Here : {st : _} -> {l : _}
|
||||
-> {ms : Lazy (List CT)} -> {depth : Nat}
|
||||
-> {g : _}
|
||||
-> (guardOK : g st l)
|
||||
-> Guarded g depth (At (l, st) ms)
|
||||
data Completed : Formula where
|
||||
IsComplete : {st : _} -> {n : _} -> {ms : _}
|
||||
-> ms === []
|
||||
-> Completed n (At st ms)
|
||||
|
||||
||| Guarded expressions are depth-inv as the guard does not care about depth.
|
||||
||| A completed formula is depth-invariant (there is nothing more to do).
|
||||
public export
|
||||
diGuarded : {p : _} -> DepthInv (Guarded p)
|
||||
diGuarded {p} = DI prf
|
||||
diCompleted : DepthInv Completed
|
||||
diCompleted = DI prf
|
||||
where
|
||||
prf : {n : _} -> {m : _} -> Guarded p n m -> Guarded p (S n) m
|
||||
prf (Here x) = Here x -- can be interactively generated!
|
||||
prf : {d : _} -> {t : _} -> Completed d t -> Completed (S d) t
|
||||
prf (IsComplete p) = IsComplete p
|
||||
|
||||
--- public export
|
||||
--- data Guarded : {Sts, Lbls : _} -> (g : (st : Sts) -> (l : Lbls) -> Type) -> Formula where
|
||||
--- Here : {st : _} -> {l : _}
|
||||
--- -> {ms : Lazy (List CT)} -> {depth : Nat}
|
||||
--- -> g st l
|
||||
--- -> Guarded g depth (At (l, st) ms)
|
||||
---
|
||||
--- public export
|
||||
--- diGuarded : {p : _} -> DepthInv (Guarded (p st l))
|
||||
--- diGuarded {p} = DI prf
|
||||
--- where
|
||||
--- prf : {n : _} -> {m : _} -> Guarded (p st l) n m -> Guarded (p st l) (S n) m
|
||||
--- prf (Here x) = Here {depth=(S n)} x
|
||||
|
||||
------------------------------------------------------------------------
|
||||
-- Conjunction / And
|
||||
|
||||
||| Conjunction of two `Formula`s
|
||||
public export
|
||||
data AND' : (f, g : Formula) -> Formula where
|
||||
MkAND' : {n : _} -> {m : _} -> f n m -> g n m -> (AND' f g) n m
|
||||
|
||||
||| Conjunction is depth-invariant
|
||||
public export
|
||||
diAND' : {f, g : Formula}
|
||||
-> {auto p : DepthInv f}
|
||||
-> {auto q : DepthInv g}
|
||||
-> DepthInv (AND' f g)
|
||||
diAND' @{(DI diP)} @{(DI diQ)} = DI (\ (MkAND' a b) => MkAND' (diP a) (diQ b))
|
||||
|
||||
------------------------------------------------------------------------
|
||||
-- Always Until
|
||||
|
||||
namespace AU
|
||||
---- -- FIXME: HOW??
|
||||
---- data RTAll : {a : Type} -> (_ : (a -> Type)) -> List a -> Type where
|
||||
---- Nil : {p : (a -> Type)}
|
||||
---- -> RTAll p []
|
||||
---- (::) : {x : a} -> {xs : List a} -> {p : (a -> Type)}
|
||||
---- -> p x -> RTAll p xs -> RTAll p (x :: xs)
|
||||
|
||||
---- mapProperty : {a : _} -> {p : _} -> {q : _}
|
||||
---- -> (p a -> q a) -> RTAll p l -> RTAll q l
|
||||
---- mapProperty f [] = []
|
||||
---- mapProperty f (p :: ps) = f p :: mapProperty f ps
|
||||
|
||||
||| A proof that for all paths in the tree, f holds until g does.
|
||||
||| We can only handle always global checks on finite paths.
|
||||
public export
|
||||
data AlwaysUntil : (f, g : Formula) -> Formula where
|
||||
||| We've found a place where g holds, so we're done.
|
||||
Here : {t : _} -> {n : _} -> g n t -> AlwaysUntil f g (S n) t
|
||||
|
||||
||| If f still holds and we can recursively show that g holds for all
|
||||
||| possible subpaths in the CT, then all branches have f hold until g does.
|
||||
There : {st : _} -> {lazyCTs : _} -> {n : _}
|
||||
-> f n (At st lazyCTs)
|
||||
---- -> RTAll ((AlwaysUntil f g) n) lazyCTs
|
||||
-> All ((AlwaysUntil f g) n) lazyCTs
|
||||
-> AlwaysUntil f g (S n) (At st lazyCTs)
|
||||
alwaysGlobal : (f : Formula) -> Formula
|
||||
alwaysGlobal f = (AlwaysUntil f f) `AND'` Completed
|
||||
|
||||
||| Provided `f` and `g` are depth-invariant, AlwaysUntil is depth-invariant
|
||||
||| We can only handle exists global checks on finite paths.
|
||||
public export
|
||||
diAU : {f,g : _} -> {auto p : DepthInv f} -> {auto q : DepthInv g}
|
||||
-> DepthInv (AlwaysUntil f g)
|
||||
diAU @{(DI diP)} @{(DI diQ)} = DI prf
|
||||
where
|
||||
-- lemma : {d : _} -> RTAll (AlwaysUntil f g d) lt -> RTAll (AlwaysUntil f g (S d)) lt
|
||||
lemma : {d : _} -> {lt : _}
|
||||
---- -> RTAll (AlwaysUntil f g d) lt -> RTAll (AlwaysUntil f g (S d)) lt
|
||||
-> All (AlwaysUntil f g d) lt -> All (AlwaysUntil f g (S d)) lt
|
||||
existsGlobal : (f : Formula) -> Formula
|
||||
existsGlobal f = (ExistsUntil f f) `AND'` Completed
|
||||
|
||||
prf : {d : _} -> {t : _} -> AlwaysUntil f g d t -> AlwaysUntil f g (S d) t
|
||||
------------------------------------------------------------------------
|
||||
-- Proof search (finally!)
|
||||
|
||||
lemma [] = []
|
||||
lemma (au :: aus) = (prf au) :: ?lemma_rhs_1 -- TODO: mapProperty prf xs
|
||||
||| Model-checking is a half-decider for the formula `f`
|
||||
MC : (f : Formula) -> Type
|
||||
MC f = (t : CT) -> (d : Nat) -> HDec (f d t)
|
||||
|
||||
prf (Here au) = Here (diQ au)
|
||||
prf (There au aus) = There (diP au) (lemma aus)
|
||||
|
||||
------------------------------------------------------------------------
|
||||
-- Exists Until
|
||||
|
||||
namespace EU
|
||||
||| A proof that somewhere in the tree, there is a path for which f holds
|
||||
||| until g does.
|
||||
public export
|
||||
data ExistsUntil : (f, g : Formula) -> Formula where
|
||||
||| If g holds here, we've found a branch where we can stop.
|
||||
Here : {t : _} -> {n : _} -> g n t -> ExistsUntil f g (S n) t
|
||||
|
||||
||| If f holds here and any of the further branches have a g, then there is
|
||||
||| a branch where f holds until g does.
|
||||
There : {st : _} -> {ms : _} -> {n : _}
|
||||
-> f n (At st ms)
|
||||
-> Any (ExistsUntil f g n) ms
|
||||
-> ExistsUntil f g (S n) (At st ms)
|
||||
|
||||
||| Provided `f` and `g` are depth-invariant, ExistsUntil is depth-invariant.
|
||||
public export
|
||||
diEU : {f, g : _} -> {auto p : DepthInv f} -> {auto q : DepthInv g}
|
||||
-> DepthInv (ExistsUntil f g)
|
||||
diEU @{(DI diP)} @{(DI diQ)} = DI prf
|
||||
where
|
||||
prf : {d : _} -> {t : _}
|
||||
-> ExistsUntil f g d t
|
||||
-> ExistsUntil f g (S d) t
|
||||
prf (Here eu) = Here (diQ eu)
|
||||
prf (There eu eus) = There (diP eu) ?prf_rhs_1 -- TODO: same err as AU
|
||||
|
||||
------------------------------------------------------------------------
|
||||
-- Completed, and the stronger forms of Global
|
||||
|
||||
||| A completed formula is a formula for which no more successor states exist.
|
||||
public export
|
||||
data Completed : Formula where
|
||||
IsComplete : {st : _} -> {n : _} -> {ms : _}
|
||||
-> ms === []
|
||||
-> Completed n (At st ms)
|
||||
|
||||
||| A completed formula is depth-invariant (there is nothing more to do).
|
||||
public export
|
||||
diCompleted : DepthInv Completed
|
||||
diCompleted = DI prf
|
||||
where
|
||||
prf : {d : _} -> {t : _} -> Completed d t -> Completed (S d) t
|
||||
prf (IsComplete p) = IsComplete p
|
||||
|
||||
||| We can only handle always global checks on finite paths.
|
||||
public export
|
||||
alwaysGlobal : (f : Formula) -> Formula
|
||||
alwaysGlobal f = (AlwaysUntil f f) `AND'` Completed
|
||||
|
||||
||| We can only handle exists global checks on finite paths.
|
||||
public export
|
||||
existsGlobal : (f : Formula) -> Formula
|
||||
existsGlobal f = (ExistsUntil f f) `AND'` Completed
|
||||
|
||||
------------------------------------------------------------------------
|
||||
-- Proof search (finally!)
|
||||
|
||||
||| Model-checking is a half-decider for the formula `f`
|
||||
MC : (f : Formula) -> Type
|
||||
MC f = (t : CT) -> (d : Nat) -> HDec (f d t)
|
||||
|
||||
||| Proof-search combinator for guards.
|
||||
now : {Sts, Lbls : _}
|
||||
-> {g : (st : Sts) -> (l : Lbls) -> Type}
|
||||
-> {hdec : _}
|
||||
-> {auto p : AnHDec hdec}
|
||||
-> ((st : Sts) -> (l : Lbls) -> hdec (g st l))
|
||||
-> MC (Guarded g)
|
||||
-- FIXME: mismatch between the `Sts` and `Lbls` here, and the ones in the type
|
||||
-- of `Guarded`. This is a problem which needs to be solved...
|
||||
-- now f (At (l', st') ms) _ = [| Here (toHDec (f st' l')) |]
|
||||
||| Proof-search combinator for guards.
|
||||
now : {g : (st : Sts) -> (l : Lbls) -> Type}
|
||||
-> {hdec : _}
|
||||
-> {auto p : AnHDec hdec}
|
||||
-> ((st : Sts) -> (l : Lbls) -> hdec (g st l))
|
||||
-> MC (Guarded g)
|
||||
now f (At (l, st) ms) d = [| Guards.Here (toHDec (f st l)) |]
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user