mirror of
https://github.com/idris-lang/Idris2.git
synced 2024-12-24 20:23:11 +03:00
[ papers ] Figure out types, start termination check
Termination checking needs figuring out. There is some funky stuff going on with the half-deciders and their constructors. Other than that, I **think** it's nearly done. God knows how much RAM it'll take though...
This commit is contained in:
parent
6421973282
commit
eb4749d381
@ -195,7 +195,7 @@ petersons2 =
|
||||
||| The parallel composition of the two Peterson's processes, to be analysed.
|
||||
public export
|
||||
covering
|
||||
petersons : ?
|
||||
petersons : Diagram (GCL State, GCL State) State
|
||||
petersons = (gclToDiag State petersons1) `pComp` (gclToDiag State petersons2)
|
||||
|
||||
|
||||
@ -207,36 +207,101 @@ public export
|
||||
IsTT : (b : Bool) -> Dec (So b)
|
||||
IsTT = decSo
|
||||
|
||||
|
||||
||| Mutual exclusion, i.e. both critical sections not simultaneously active.
|
||||
public export
|
||||
Mutex : (p : State) -> ?
|
||||
Mutex : (p : State) -> Formula ? ?
|
||||
Mutex p =
|
||||
AlwaysGlobal State () (Guarded State () (\ _, _ => So (not (p.inCS1 && p.inCS2))))
|
||||
AlwaysGlobal (GCL State, GCL State) State
|
||||
(Guarded (GCL State, GCL State) State
|
||||
(\_,_ => So (not (p.inCS1 && p.inCS2))))
|
||||
|
||||
||| Model-check (search) whether the mutex condition is satisfied.
|
||||
public export
|
||||
mcMutex : {p : _} -> MC State () (Mutex p)
|
||||
mcMutex =
|
||||
agSearch State () (now State () (\_, _ => fromDec $ IsTT _))
|
||||
-- (not (p .inCS1 && (Delay (p .inCS2))) ^
|
||||
checkMutex : {p : _} -> MC (GCL State, GCL State) State (Mutex p)
|
||||
checkMutex =
|
||||
agSearch (GCL State, GCL State) State
|
||||
(now (GCL State, GCL State) State (\_,_ => fromDec $ IsTT _))
|
||||
-- (not (p .inCS1 && (Delay (p .inCS2))) ^
|
||||
|
||||
|
||||
||| Starvation freedom
|
||||
public export
|
||||
SF : (p : State) -> ?
|
||||
SF : (p : State) -> Formula ? ?
|
||||
SF p =
|
||||
let guardCS1 = Guarded State () (\ _, _ => So (p.inCS1))
|
||||
guardCS2 = Guarded State () (\ _, _ => So (p.inCS2))
|
||||
in AND' State ()
|
||||
(AlwaysFinally State () guardCS1)
|
||||
(AlwaysFinally State () guardCS2)
|
||||
let guardCS1 = Guarded (GCL State, GCL State) State (\ _, _ => So (p.inCS1))
|
||||
guardCS2 = Guarded (GCL State, GCL State) State (\ _, _ => So (p.inCS2))
|
||||
in AND' (GCL State, GCL State) State
|
||||
(AlwaysFinally (GCL State, GCL State) State guardCS1)
|
||||
(AlwaysFinally (GCL State, GCL State) State guardCS2)
|
||||
|
||||
||| Model-check (search) whether starvation freedom holds.
|
||||
public export
|
||||
mcSF : {p : _} -> MC State () (SF p)
|
||||
mcSF =
|
||||
let mcAndFst = afSearch State () (now State () (\_,_ => fromDec $ IsTT _))
|
||||
-- p.inCS1 ^
|
||||
mcAndSnd = afSearch State () (now State () (\_,_ => fromDec $ IsTT _))
|
||||
-- p.inCS2 ^
|
||||
in mcAND' State () mcAndFst mcAndSnd
|
||||
checkSF : {p : _} -> MC (GCL State, GCL State) State (SF p)
|
||||
checkSF =
|
||||
let mcAndFst = afSearch (GCL State, GCL State) State
|
||||
(now (GCL State, GCL State) State
|
||||
(\_,_ => fromDec $ IsTT _))
|
||||
-- p.inCS1 ^
|
||||
mcAndSnd = afSearch (GCL State, GCL State) State
|
||||
(now (GCL State, GCL State) State
|
||||
(\_,_ => fromDec $ IsTT _))
|
||||
-- p.inCS2 ^
|
||||
in mcAND' (GCL State, GCL State) State mcAndFst mcAndSnd
|
||||
|
||||
|
||||
||| Deadlock freedom, aka. termination for all possible paths/traces
|
||||
public export
|
||||
Termination : {p : _} -> Formula ? ?
|
||||
Termination =
|
||||
AlwaysFinally (GCL State, GCL State) State
|
||||
(Guarded (GCL State, GCL State) State
|
||||
(\_, _ => allSkip))
|
||||
where
|
||||
allSkip : {auto l : (GCL State, GCL State)} -> Type
|
||||
allSkip @{(a, b)} = (a === SKIP State, b === SKIP State)
|
||||
|
||||
||| Model-check (search) whether termination holds.
|
||||
public export
|
||||
checkTermination : {p : _} -> ?searchMe
|
||||
checkTermination =
|
||||
?mcTermination_rhs -- afSearch State () (now State () ?tododododo)
|
||||
where
|
||||
-- l should be auto-implicit, but we can't search for that here
|
||||
isTerm : (l : (GCL State, GCL State)) -> Bool
|
||||
isTerm (a, b) =
|
||||
(weaken $ isSkip State a) && (weaken $ isSkip State b)
|
||||
|
||||
sound : (l : (GCL State, GCL State))
|
||||
-> So (isTerm l)
|
||||
-> (fst l === SKIP State, snd l === SKIP State)
|
||||
sound (a, b) _ with (isSkip State a) | (isSkip State b)
|
||||
sound (a, b) _ | (Yes p) | (Yes q) = (p, q)
|
||||
sound (a, b) Oh | (Yes p) | (No _) impossible
|
||||
sound (a, b) Oh | (No _) | _ impossible
|
||||
|
||||
-- theHDec : ?
|
||||
-- theHDec = MkHDec isTerm sound
|
||||
|
||||
||| Initial state for model-checking Peterson's algorithm.
|
||||
public export
|
||||
init : State
|
||||
init = MkState False False 0 False False
|
||||
-- intent1 intent2 turn inCS1 inCS2
|
||||
|
||||
||| The computational tree for the two Peterson's processes.
|
||||
public export
|
||||
covering
|
||||
tree : CT (GCL State, GCL State) State
|
||||
tree = model (GCL State, GCL State) State petersons init
|
||||
|
||||
checkPetersons : Prop ? ?
|
||||
checkPetersons = exists $
|
||||
(mcAND' (GCL State, GCL State) State
|
||||
checkMutex
|
||||
(mcAND' (GCL State, GCL State) State
|
||||
checkSF
|
||||
checkTermination
|
||||
))
|
||||
tree
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user