Add wrap on file end
use rust-style raw string syntax
use swift style syntax raw string
Update src/Parser/Support.idr
Co-authored-by: André Videla <andre.videla@gmail.com>
Escape line wrap
Resolve conflict
It's disappointing to have to do this, but I think necessary because
various issue reports have shown it to be unsound (at least as far as
inference goes) and, at the very least, confusing. This patch brings us
back to the basic rules of QTT.
On the one hand, this makes the 1 multiplicity less useful, because it
means we can't flag arguments as being used exactly once which would be
useful for optimisation purposes as well as precision in the type. On
the other hand, it removes some complexity (and a hack) from
unification, and has the advantage of being correct! Also, I still
consider the 1 multiplicity an experiment.
We can still do interesting things like protocol state tracking, which
is my primary motivation at least.
Ideally, if the 1 multiplicity is going to be more generall useful,
we'll need some kind of way of doing multiplicity polymorphism in the
future. I don't think subtyping is the way (I've pretty much always come
to regret adding some form of subtyping).
Fixes#73 (and maybe some others).
Local hints need to reduce (just like global hints do) so we expand
their definition to the lifted name before applying them.
We're identifying the global hints by knowing that the binder name is a
nested function name. This is a bit of hack, and it'd probably be better
to record that information in the binder instead, but that's a more
substantial change than I want to do right now.
This gives us the ability to define and use implementations locally, in
where clauses/local let bindings, as well as flag local definitions as
hints.
It's not yet quite equivalent to global hints, however, since it translated
the hint to a local let binding, which doesn't reduce, so if something
relies on the reduction behaviour of the hint, it won't work. This
refinement is coming later
+ Expanded the documentation on how to use literate modes.
+ Added invisible code blocks in Markdown using specially tagged comment blocks: `<!-- idris -->`.
+ Fixed OrgMode specificaton to recognise comment blocks properly.
This allows, for exmaple, to have apostrophes in module names.
Test was added only for chez, however this should be viable for all
targets with `:exec` implemented.
Things like (,) () aren't straightforward IVar's but are IAlternative's
which present options about how the term should resolve. [| |] was not
accounting for this.
Auxiliary functions introduced in elaboration (e.g., through case splits and with clauses) now
have the same totality annotation as the function they're defined in.
Moved auxiliary function `findSetTotal` into `Context.idr` since it's
now used by `ProcessDef.idr` too.
Added a totality requirement argument to `checkClause` so that the
with-clause case could propagate it to the functions it generates in
elaboration.
Sandwhich the rhs elaboration in pattern matches with code that sets
the global, default, totality requirement to the current one, and
restores the previous default afterwards. It's a bit of a hacky way to
do it, but I don't think we have a better alternative with the current
design.
Until now namespaces were stored as (reversed) lists of strings.
It led to:
* confusing code where we work on the underlying representation of
namespaces rather than say what we mean (using `isSuffixOf` to mean
`isParentOf`)
* potentially introducing errors by not respecting the invariant cf.
bug report #616 (but also name generation in the scheme backend
although that did not lead to bugs as it was self-consistent AFAICT)
* ad-hoc code to circumvent overlapping interface implementation when
showing / pretty-printing namespaces
This PR introduces a `Namespace` newtype containing a list of strings.
Nested namespaces are still stored in reverse order but the exposed
interface aims to support programming by saying what we mean
(`isParentOf`, `isApproximationOf`, `X <.> Y` computes to `X.Y`, etc.)
irrespective of the underlying representation.
Until now namespaces were stored as (reversed) lists of strings.
It led to:
* confusing code where we work on the representation rather than say
what we mean (e.g. using `isSuffixOf` to mean `isParentOf`)
* potentially introducing errors by not respecting the invariant cf.
bug report #616 (but also name generation in the scheme backend
although that did not lead to bugs as it was self-consistent AFAICT)
* ad-hoc code to circumvent overlapping interface implementations when
showing / pretty-printing namespaces
This introduces a Namespace newtype containing non-empty lists of
strings. Nested namespaces are still stored in reverse order but the
exposed interface aims to support programming by saying what we mean
(`isParentOf`, `isApproximationOf`, `X <.> Y` computes to `X.Y`, etc.)
irrespective of the underlying representation.
All of these internal names are making the output fragile. This
cleanup should allow us to only have to update the golden file
when there is a genuinely interesting change.