We've always just used 0, which isn't correct if the function is going
to be used in a runtime pattern match. Now calculate correctly so that
we're explicit about which type level variables are used at runtime.
This might cause some programs to fail to compile, if they use functions
that calculate Pi types. The solution is to make those functions
explicitly 0 multiplicity. If that doesn't work, you may have been
accidentally trying to use compile-time only data at run time!
Fixes#1163
Now reporting an error if we can't find a package that satisfies the
constraints. The version number field can still be a string (as it used
to be) but will give a deprecation warning - and the old style version
string wasn't used anyway.
Version constraints can have an upper and/or lower bound, which can be
inclusive or not.
Add wrap on file end
use rust-style raw string syntax
use swift style syntax raw string
Update src/Parser/Support.idr
Co-authored-by: André Videla <andre.videla@gmail.com>
Escape line wrap
Resolve conflict
It's disappointing to have to do this, but I think necessary because
various issue reports have shown it to be unsound (at least as far as
inference goes) and, at the very least, confusing. This patch brings us
back to the basic rules of QTT.
On the one hand, this makes the 1 multiplicity less useful, because it
means we can't flag arguments as being used exactly once which would be
useful for optimisation purposes as well as precision in the type. On
the other hand, it removes some complexity (and a hack) from
unification, and has the advantage of being correct! Also, I still
consider the 1 multiplicity an experiment.
We can still do interesting things like protocol state tracking, which
is my primary motivation at least.
Ideally, if the 1 multiplicity is going to be more generall useful,
we'll need some kind of way of doing multiplicity polymorphism in the
future. I don't think subtyping is the way (I've pretty much always come
to regret adding some form of subtyping).
Fixes#73 (and maybe some others).
Local hints need to reduce (just like global hints do) so we expand
their definition to the lifted name before applying them.
We're identifying the global hints by knowing that the binder name is a
nested function name. This is a bit of hack, and it'd probably be better
to record that information in the binder instead, but that's a more
substantial change than I want to do right now.