module Data.Tree.Perfect import Control.WellFounded import Decidable.Order import Decidable.Order.Strict import Data.Monoid.Exponentiation import Data.Num.Implementations import Data.Nat.Views import Data.Nat import Data.Nat.Order import Data.Nat.Order.Strict import Data.Nat.Order.Properties import Data.Nat.Exponentiation import Data.DPair import Syntax.WithProof import Syntax.PreorderReasoning.Generic %default total public export data Tree : Nat -> Type -> Type where Leaf : a -> Tree Z a Node : Tree n a -> Tree n a -> Tree (S n) a public export Functor (Tree n) where map f (Leaf a) = Leaf (f a) map f (Node l r) = Node (map f l) (map f r) public export replicate : (n : Nat) -> a -> Tree n a replicate Z a = Leaf a replicate (S n) a = let t = replicate n a in Node t t public export {n : _} -> Applicative (Tree n) where pure = replicate n Leaf f <*> Leaf a = Leaf (f a) Node fl fr <*> Node xl xr = Node (fl <*> xl) (fr <*> xr) public export data Path : Nat -> Type where Here : Path Z Left : Path n -> Path (S n) Right : Path n -> Path (S n) public export toNat : {n : _} -> Path n -> Nat toNat Here = Z toNat (Left p) = toNat p toNat {n = S n} (Right p) = toNat p + pow2 n export toNatBounded : (n : Nat) -> (p : Path n) -> toNat p `LT` pow2 n toNatBounded Z Here = lteRefl toNatBounded (S n) (Left p) = CalcWith $ |~ S (toNat p) <~ pow2 n ...( toNatBounded n p ) <~ pow2 n + pow2 n ...( lteAddRight (pow2 n) ) ~~ pow2 (S n) ...( sym unfoldPow2 ) toNatBounded (S n) (Right p) = CalcWith $ let ih = toNatBounded n p in |~ S (toNat p) + pow2 n <~ pow2 n + pow2 n ...( plusLteMonotoneRight _ _ _ ih ) ~~ pow2 (S n) ...( sym unfoldPow2 ) namespace FromNat ||| This pattern-matching in `fromNat` is annoying: ||| The `Z (S _)` case is impossible ||| In the `k (S n)` case we want to branch on whether `k `LT` pow2 n` ||| and get our hands on some proofs. ||| This view factors out that work. public export data View : (k, n : Nat) -> Type where ZZ : View Z Z SLT : (0 p : k `LT` pow2 n) -> View k (S n) SNLT : (0 p : k `GTE` pow2 n) -> (0 rec : minus k (pow2 n) `LT` pow2 n) -> View k (S n) public export view : (k, n : Nat) -> (0 _ : k `LT` (pow2 n)) -> View k n view Z Z p = ZZ view (S _) Z p = void $ absurd (fromLteSucc p) view k (S n) p with (@@ lt k (pow2 n)) view k (S n) p | (True ** eq) = SLT (ltIsLT k (pow2 n) eq) view k (S n) p | (False ** eq) = SNLT gte prf where 0 gte : k `GTE` pow2 n gte = notLTImpliesGTE (notltIsNotLT k (pow2 n) eq) 0 prf : minus k (pow2 n) `LT` pow2 n prf = CalcWith $ |~ S (minus k (pow2 n)) <~ minus (pow2 (S n)) (pow2 n) ...( minusLtMonotone p pow2Increasing ) ~~ minus (pow2 n + pow2 n) (pow2 n) ...( cong (\ m => minus m (pow2 n)) unfoldPow2 ) ~~ pow2 n ...( minusPlus (pow2 n) ) ||| Convert a natural number to a path in a perfect binary tree public export fromNat : (k, n : Nat) -> (0 _ : k `LT` pow2 n) -> Path n fromNat k n p with (view k n p) fromNat Z Z p | ZZ = Here fromNat k (S n) p | SLT lt = Left (fromNat k n lt) fromNat k (S n) p | SNLT _ lt = Right (fromNat (minus k (pow2 n)) n lt) ||| The `fromNat` conversion is compatible with the semantics `toNat` export fromNatCorrect : (k, n : Nat) -> (0 p : k `LT` pow2 n) -> toNat (fromNat k n p) === k fromNatCorrect k n p with (view k n p) fromNatCorrect Z Z p | ZZ = Refl fromNatCorrect k (S n) p | SLT lt = fromNatCorrect k n lt fromNatCorrect k (S n) p | SNLT gte lt = rewrite fromNatCorrect (minus k (pow2 n)) n lt in irrelevantEq $ plusMinusLte (pow2 n) k gte public export lookup : Tree n a -> Path n -> a lookup (Leaf a) Here = a lookup (Node l _) (Left p) = lookup l p lookup (Node _ r) (Right p) = lookup r p