module Data.Nat import public Control.Relation import public Control.Ord import public Control.Order import public Control.Function %default total export Uninhabited (Z = S n) where uninhabited Refl impossible export Uninhabited (S n = Z) where uninhabited Refl impossible export Uninhabited (a = b) => Uninhabited (S a = S b) where uninhabited Refl @{ab} = uninhabited @{ab} Refl public export isZero : Nat -> Bool isZero Z = True isZero (S n) = False public export isSucc : Nat -> Bool isSucc Z = False isSucc (S n) = True public export data IsSucc : (n : Nat) -> Type where ItIsSucc : IsSucc (S n) export Uninhabited (IsSucc Z) where uninhabited ItIsSucc impossible public export isItSucc : (n : Nat) -> Dec (IsSucc n) isItSucc Z = No absurd isItSucc (S n) = Yes ItIsSucc public export power : Nat -> Nat -> Nat power base Z = S Z power base (S exp) = base * (power base exp) public export hyper : Nat -> Nat -> Nat -> Nat hyper Z a b = S b hyper (S Z) a Z = a hyper (S(S Z)) a Z = Z hyper n a Z = S Z hyper (S pn) a (S pb) = hyper pn a (hyper (S pn) a pb) public export pred : Nat -> Nat pred Z = Z pred (S n) = n -- Comparisons export compareNatDiag : (k : Nat) -> compareNat k k === EQ compareNatDiag Z = Refl compareNatDiag (S k) = compareNatDiag k export compareNatFlip : (m, n : Nat) -> flip Prelude.compareNat m n === contra (compareNat m n) compareNatFlip 0 0 = Refl compareNatFlip 0 (S n) = Refl compareNatFlip (S m) 0 = Refl compareNatFlip (S m) (S n) = compareNatFlip m n public export data NotBothZero : (n, m : Nat) -> Type where LeftIsNotZero : NotBothZero (S n) m RightIsNotZero : NotBothZero n (S m) export Uninhabited (NotBothZero 0 0) where uninhabited LeftIsNotZero impossible uninhabited RightIsNotZero impossible public export data LTE : (n, m : Nat) -> Type where LTEZero : LTE Z right LTESucc : LTE left right -> LTE (S left) (S right) export Uninhabited (LTE (S n) Z) where uninhabited LTEZero impossible export Uninhabited (LTE m n) => Uninhabited (LTE (S m) (S n)) where uninhabited (LTESucc lte) = uninhabited lte public export Reflexive Nat LTE where reflexive {x = Z} = LTEZero reflexive {x = S _} = LTESucc $ reflexive public export Transitive Nat LTE where transitive LTEZero _ = LTEZero transitive (LTESucc xy) (LTESucc yz) = LTESucc $ transitive xy yz public export Antisymmetric Nat LTE where antisymmetric LTEZero LTEZero = Refl antisymmetric (LTESucc xy) (LTESucc yx) = cong S $ antisymmetric xy yx public export Connex Nat LTE where connex {x = Z} _ = Left LTEZero connex {y = Z} _ = Right LTEZero connex {x = S _} {y = S _} prf = case connex $ prf . (cong S) of Left jk => Left $ LTESucc jk Right kj => Right $ LTESucc kj public export Preorder Nat LTE where public export PartialOrder Nat LTE where public export LinearOrder Nat LTE where public export GTE : Nat -> Nat -> Type GTE left right = LTE right left public export LT : Nat -> Nat -> Type LT left right = LTE (S left) right namespace LT ||| LT is defined in terms of LTE which makes it annoying to use. ||| This convenient view of allows us to avoid having to constantly ||| perform nested matches to obtain another LT subproof instead of ||| an LTE one. public export data View : LT m n -> Type where LTZero : View (LTESucc LTEZero) LTSucc : (lt : m `LT` n) -> View (LTESucc lt) ||| Deconstruct an LT proof into either a base case or a further *LT* export view : (lt : LT m n) -> View lt view (LTESucc LTEZero) = LTZero view (LTESucc lt@(LTESucc _)) = LTSucc lt ||| A convenient alias for trivial LT proofs export ltZero : Z `LT` S m ltZero = LTESucc LTEZero public export GT : Nat -> Nat -> Type GT left right = LT right left export succNotLTEzero : Not (LTE (S m) Z) succNotLTEzero LTEZero impossible export fromLteSucc : LTE (S m) (S n) -> LTE m n fromLteSucc (LTESucc x) = x export succNotLTEpred : {x : Nat} -> Not $ LTE (S x) x succNotLTEpred {x = 0} prf = succNotLTEzero prf succNotLTEpred {x = S _} prf = succNotLTEpred $ fromLteSucc prf public export isLTE : (m, n : Nat) -> Dec (LTE m n) isLTE Z n = Yes LTEZero isLTE (S k) Z = No succNotLTEzero isLTE (S k) (S j) = case isLTE k j of No contra => No (contra . fromLteSucc) Yes prf => Yes (LTESucc prf) public export isGTE : (m, n : Nat) -> Dec (GTE m n) isGTE m n = isLTE n m public export isLT : (m, n : Nat) -> Dec (LT m n) isLT m n = isLTE (S m) n public export isGT : (m, n : Nat) -> Dec (GT m n) isGT m n = isLT n m export lteSuccRight : LTE n m -> LTE n (S m) lteSuccRight LTEZero = LTEZero lteSuccRight (LTESucc x) = LTESucc (lteSuccRight x) export lteSuccLeft : LTE (S n) m -> LTE n m lteSuccLeft (LTESucc x) = lteSuccRight x export lteAddRight : (n : Nat) -> LTE n (n + m) lteAddRight Z = LTEZero lteAddRight (S k) {m} = LTESucc (lteAddRight {m} k) export notLTEImpliesGT : {a, b : Nat} -> Not (a `LTE` b) -> a `GT` b notLTEImpliesGT {a = 0 } not_z_lte_b = absurd $ not_z_lte_b LTEZero notLTEImpliesGT {a = S a} {b = 0 } notLTE = LTESucc LTEZero notLTEImpliesGT {a = S a} {b = S k} notLTE = LTESucc (notLTEImpliesGT (notLTE . LTESucc)) export LTEImpliesNotGT : a `LTE` b -> Not (a `GT` b) LTEImpliesNotGT LTEZero q = absurd q LTEImpliesNotGT (LTESucc p) (LTESucc q) = LTEImpliesNotGT p q export notLTImpliesGTE : {a, b : _} -> Not (LT a b) -> GTE a b notLTImpliesGTE notLT = fromLteSucc $ notLTEImpliesGT notLT export LTImpliesNotGTE : a `LT` b -> Not (a `GTE` b) LTImpliesNotGTE p q = LTEImpliesNotGT q p public export lte : Nat -> Nat -> Bool lte Z right = True lte left Z = False lte (S left) (S right) = lte left right public export gte : Nat -> Nat -> Bool gte left right = lte right left public export lt : Nat -> Nat -> Bool lt left right = lte (S left) right public export gt : Nat -> Nat -> Bool gt left right = lt right left export lteReflectsLTE : (k : Nat) -> (n : Nat) -> lte k n === True -> k `LTE` n lteReflectsLTE (S k) 0 _ impossible lteReflectsLTE 0 0 _ = LTEZero lteReflectsLTE 0 (S k) _ = LTEZero lteReflectsLTE (S k) (S j) prf = LTESucc (lteReflectsLTE k j prf) export gteReflectsGTE : (k : Nat) -> (n : Nat) -> gte k n === True -> k `GTE` n gteReflectsGTE k n prf = lteReflectsLTE n k prf export ltReflectsLT : (k : Nat) -> (n : Nat) -> lt k n === True -> k `LT` n ltReflectsLT k n prf = lteReflectsLTE (S k) n prf export gtReflectsGT : (k : Nat) -> (n : Nat) -> gt k n === True -> k `GT` n gtReflectsGT k n prf = ltReflectsLT n k prf public export minimum : Nat -> Nat -> Nat minimum Z m = Z minimum (S n) Z = Z minimum (S n) (S m) = S (minimum n m) public export maximum : Nat -> Nat -> Nat maximum Z m = m maximum (S n) Z = S n maximum (S n) (S m) = S (maximum n m) -- Proofs on S export eqSucc : (0 left, right : Nat) -> left = right -> S left = S right eqSucc _ _ Refl = Refl export Injective S where injective Refl = Refl ||| A definition of non-zero with a better behaviour than `Not (x = Z)` ||| This is amenable to proof search and `NonZero Z` is more readily ||| detected as impossible by Idris public export data NonZero : Nat -> Type where SIsNonZero : NonZero (S x) export Uninhabited (NonZero Z) where uninhabited SIsNonZero impossible export SIsNotZ : Not (S x = Z) SIsNotZ = absurd ||| Auxiliary function: ||| mod' fuel a b = a `mod` (S b) ||| assuming we have enough fuel public export mod' : Nat -> Nat -> Nat -> Nat mod' Z centre right = centre mod' (S fuel) centre right = if lte centre right then centre else mod' fuel (minus centre (S right)) right public export modNatNZ : Nat -> (y: Nat) -> (0 _ : NonZero y) -> Nat modNatNZ left Z p = void (absurd p) modNatNZ left (S right) _ = mod' left left right export partial modNat : Nat -> Nat -> Nat modNat left (S right) = modNatNZ left (S right) SIsNonZero ||| Auxiliary function: ||| div' fuel a b = a `div` (S b) ||| assuming we have enough fuel public export div' : Nat -> Nat -> Nat -> Nat div' Z centre right = Z div' (S fuel) centre right = if lte centre right then Z else S (div' fuel (minus centre (S right)) right) -- 'public' to allow type-level division public export divNatNZ : Nat -> (y: Nat) -> (0 _ : NonZero y) -> Nat divNatNZ left (S right) _ = div' left left right export partial divNat : Nat -> Nat -> Nat divNat left (S right) = divNatNZ left (S right) SIsNonZero export covering divCeilNZ : Nat -> (y: Nat) -> (0 _ : NonZero y) -> Nat divCeilNZ x y p = case (modNatNZ x y p) of Z => divNatNZ x y p S _ => S (divNatNZ x y p) export partial divCeil : Nat -> Nat -> Nat divCeil x (S y) = divCeilNZ x (S y) SIsNonZero public export divmod' : Nat -> Nat -> Nat -> (Nat, Nat) divmod' Z centre right = (Z, centre) divmod' (S fuel) centre right = if lte centre right then (Z, centre) else let qr = divmod' fuel (minus centre (S right)) right in (S (fst qr), snd qr) public export divmodNatNZ : Nat -> (y: Nat) -> (0 _ : NonZero y) -> (Nat, Nat) divmodNatNZ left (S right) _ = divmod' left left right public export Integral Nat where div = divNat mod = modNat export covering gcd : (a: Nat) -> (b: Nat) -> {auto ok: NotBothZero a b} -> Nat gcd a Z = a gcd Z b = b gcd a (S b) = gcd (S b) (modNatNZ a (S b) SIsNonZero) export partial lcm : Nat -> Nat -> Nat lcm _ Z = Z lcm Z _ = Z lcm a (S b) = divNat (a * (S b)) (gcd a (S b)) -------------------------------------------------------------------------------- -- An informative comparison view -------------------------------------------------------------------------------- public export data CmpNat : Nat -> Nat -> Type where CmpLT : (y : _) -> CmpNat x (x + S y) CmpEQ : CmpNat x x CmpGT : (x : _) -> CmpNat (y + S x) y export cmp : (x, y : Nat) -> CmpNat x y cmp Z Z = CmpEQ cmp Z (S k) = CmpLT _ cmp (S k) Z = CmpGT _ cmp (S x) (S y) with (cmp x y) cmp (S x) (S (x + (S k))) | CmpLT k = CmpLT k cmp (S x) (S x) | CmpEQ = CmpEQ cmp (S (y + (S k))) (S y) | CmpGT k = CmpGT k -- Proofs on + export plusZeroLeftNeutral : (right : Nat) -> 0 + right = right plusZeroLeftNeutral _ = Refl export plusZeroRightNeutral : (left : Nat) -> left + 0 = left plusZeroRightNeutral Z = Refl plusZeroRightNeutral (S n) = rewrite plusZeroRightNeutral n in Refl export plusSuccRightSucc : (left, right : Nat) -> S (left + right) = left + (S right) plusSuccRightSucc Z _ = Refl plusSuccRightSucc (S left) right = rewrite plusSuccRightSucc left right in Refl export plusCommutative : (left, right : Nat) -> left + right = right + left plusCommutative Z right = rewrite plusZeroRightNeutral right in Refl plusCommutative (S left) right = rewrite plusCommutative left right in rewrite plusSuccRightSucc right left in Refl export plusAssociative : (left, centre, right : Nat) -> left + (centre + right) = (left + centre) + right plusAssociative Z _ _ = Refl plusAssociative (S left) centre right = rewrite plusAssociative left centre right in Refl export plusConstantRight : (left, right, c : Nat) -> left = right -> left + c = right + c plusConstantRight _ _ _ Refl = Refl export plusConstantLeft : (left, right, c : Nat) -> left = right -> c + left = c + right plusConstantLeft _ _ _ Refl = Refl export plusOneSucc : (right : Nat) -> 1 + right = S right plusOneSucc _ = Refl export plusLeftCancel : (left, right, right' : Nat) -> left + right = left + right' -> right = right' plusLeftCancel Z _ _ p = p plusLeftCancel (S left) right right' p = plusLeftCancel left right right' $ injective p export plusRightCancel : (left, left', right : Nat) -> left + right = left' + right -> left = left' plusRightCancel left left' right p = plusLeftCancel right left left' $ rewrite plusCommutative right left in rewrite plusCommutative right left' in p export plusLeftLeftRightZero : (left, right : Nat) -> left + right = left -> right = Z plusLeftLeftRightZero left right p = plusLeftCancel left right Z $ rewrite plusZeroRightNeutral left in p export plusLteMonotoneRight : (p, q, r : Nat) -> q `LTE` r -> (q+p) `LTE` (r+p) plusLteMonotoneRight p Z r LTEZero = rewrite plusCommutative r p in lteAddRight p plusLteMonotoneRight p (S q) (S r) (LTESucc l) = LTESucc $ plusLteMonotoneRight p q r l export plusLteMonotoneLeft : (p, q, r : Nat) -> q `LTE` r -> (p + q) `LTE` (p + r) plusLteMonotoneLeft p q r p_lt_q = rewrite plusCommutative p q in rewrite plusCommutative p r in plusLteMonotoneRight p q r p_lt_q export plusLteMonotone : {m, n, p, q : Nat} -> m `LTE` n -> p `LTE` q -> (m + p) `LTE` (n + q) plusLteMonotone left right = transitive (plusLteMonotoneLeft m p q right) (plusLteMonotoneRight q m n left) zeroPlusLeftZero : (a,b : Nat) -> (0 = a + b) -> a = 0 zeroPlusLeftZero 0 0 Refl = Refl zeroPlusLeftZero (S k) b _ impossible zeroPlusRightZero : (a,b : Nat) -> (0 = a + b) -> b = 0 zeroPlusRightZero 0 0 Refl = Refl zeroPlusRightZero (S k) b _ impossible -- Proofs on * export multZeroLeftZero : (right : Nat) -> Z * right = Z multZeroLeftZero _ = Refl export multZeroRightZero : (left : Nat) -> left * Z = Z multZeroRightZero Z = Refl multZeroRightZero (S left) = multZeroRightZero left export multRightSuccPlus : (left, right : Nat) -> left * (S right) = left + (left * right) multRightSuccPlus Z _ = Refl multRightSuccPlus (S left) right = rewrite multRightSuccPlus left right in rewrite plusAssociative left right (left * right) in rewrite plusAssociative right left (left * right) in rewrite plusCommutative right left in Refl export multLeftSuccPlus : (left, right : Nat) -> (S left) * right = right + (left * right) multLeftSuccPlus _ _ = Refl export multCommutative : (left, right : Nat) -> left * right = right * left multCommutative Z right = rewrite multZeroRightZero right in Refl multCommutative (S left) right = rewrite multCommutative left right in rewrite multRightSuccPlus right left in Refl export multDistributesOverPlusLeft : (left, centre, right : Nat) -> (left + centre) * right = (left * right) + (centre * right) multDistributesOverPlusLeft Z _ _ = Refl multDistributesOverPlusLeft (S k) centre right = rewrite multDistributesOverPlusLeft k centre right in rewrite plusAssociative right (k * right) (centre * right) in Refl export multDistributesOverPlusRight : (left, centre, right : Nat) -> left * (centre + right) = (left * centre) + (left * right) multDistributesOverPlusRight left centre right = rewrite multCommutative left (centre + right) in rewrite multCommutative left centre in rewrite multCommutative left right in multDistributesOverPlusLeft centre right left export multAssociative : (left, centre, right : Nat) -> left * (centre * right) = (left * centre) * right multAssociative Z _ _ = Refl multAssociative (S left) centre right = rewrite multAssociative left centre right in rewrite multDistributesOverPlusLeft centre (mult left centre) right in Refl export multOneLeftNeutral : (right : Nat) -> 1 * right = right multOneLeftNeutral right = plusZeroRightNeutral right export multOneRightNeutral : (left : Nat) -> left * 1 = left multOneRightNeutral left = rewrite multCommutative left 1 in multOneLeftNeutral left -- Proofs on minus export minusSuccSucc : (left, right : Nat) -> minus (S left) (S right) = minus left right minusSuccSucc _ _ = Refl export minusZeroLeft : (right : Nat) -> minus 0 right = Z minusZeroLeft _ = Refl export minusZeroRight : (left : Nat) -> minus left 0 = left minusZeroRight Z = Refl minusZeroRight (S _) = Refl export minusZeroN : (n : Nat) -> Z = minus n n minusZeroN Z = Refl minusZeroN (S n) = minusZeroN n export minusOneSuccN : (n : Nat) -> S Z = minus (S n) n minusOneSuccN Z = Refl minusOneSuccN (S n) = minusOneSuccN n export minusSuccOne : (n : Nat) -> minus (S n) 1 = n minusSuccOne Z = Refl minusSuccOne (S _) = Refl export minusPlusZero : (n, m : Nat) -> minus n (n + m) = Z minusPlusZero Z _ = Refl minusPlusZero (S n) m = minusPlusZero n m export minusPos : m `LT` n -> Z `LT` minus n m minusPos lt = case view lt of LTZero => ltZero LTSucc lt => minusPos lt export minusLteMonotone : {p : Nat} -> m `LTE` n -> minus m p `LTE` minus n p minusLteMonotone LTEZero = LTEZero minusLteMonotone {p = Z} prf@(LTESucc _) = prf minusLteMonotone {p = S p} (LTESucc lte) = minusLteMonotone lte export minusLtMonotone : m `LT` n -> p `LT` n -> minus m p `LT` minus n p minusLtMonotone mltn pltn = case view pltn of LTZero => rewrite minusZeroRight m in mltn LTSucc pltn => case view mltn of LTZero => minusPos pltn LTSucc mltn => minusLtMonotone mltn pltn public export minusPlus : (m : Nat) -> minus (plus m n) m === n minusPlus Z = irrelevantEq (minusZeroRight n) minusPlus (S m) = minusPlus m export plusMinusLte : (n, m : Nat) -> LTE n m -> (minus m n) + n = m plusMinusLte Z m _ = rewrite minusZeroRight m in plusZeroRightNeutral m plusMinusLte (S _) Z lte = absurd lte plusMinusLte (S n) (S m) lte = rewrite sym $ plusSuccRightSucc (minus m n) n in cong S $ plusMinusLte n m (fromLteSucc lte) export minusMinusMinusPlus : (left, centre, right : Nat) -> minus (minus left centre) right = minus left (centre + right) minusMinusMinusPlus Z Z _ = Refl minusMinusMinusPlus (S _) Z _ = Refl minusMinusMinusPlus Z (S _) _ = Refl minusMinusMinusPlus (S left) (S centre) right = rewrite minusMinusMinusPlus left centre right in Refl export plusMinusLeftCancel : (left, right : Nat) -> (right' : Nat) -> minus (left + right) (left + right') = minus right right' plusMinusLeftCancel Z _ _ = Refl plusMinusLeftCancel (S left) right right' = rewrite plusMinusLeftCancel left right right' in Refl export multDistributesOverMinusLeft : (left, centre, right : Nat) -> (minus left centre) * right = minus (left * right) (centre * right) multDistributesOverMinusLeft Z Z _ = Refl multDistributesOverMinusLeft (S left) Z right = rewrite minusZeroRight (right + (left * right)) in Refl multDistributesOverMinusLeft Z (S _) _ = Refl multDistributesOverMinusLeft (S left) (S centre) right = rewrite multDistributesOverMinusLeft left centre right in rewrite plusMinusLeftCancel right (left * right) (centre * right) in Refl export multDistributesOverMinusRight : (left, centre, right : Nat) -> left * (minus centre right) = minus (left * centre) (left * right) multDistributesOverMinusRight left centre right = rewrite multCommutative left (minus centre right) in rewrite multDistributesOverMinusLeft centre right left in rewrite multCommutative centre left in rewrite multCommutative right left in Refl export zeroMultEitherZero : (a,b : Nat) -> a*b = 0 -> Either (a = 0) (b = 0) zeroMultEitherZero 0 b prf = Left Refl zeroMultEitherZero (S a) b prf = Right $ zeroPlusLeftZero b (a * b) (sym prf) -- power proofs -- multPowerPowerPlus : (base, exp, exp' : Nat) -> -- power base (exp + exp') = (power base exp) * (power base exp') -- multPowerPowerPlus base Z exp' = -- rewrite sym $ plusZeroRightNeutral (power base exp') in Refl -- multPowerPowerPlus base (S exp) exp' = -- rewrite multPowerPowerPlus base exp exp' in -- rewrite sym $ multAssociative base (power base exp) (power base exp') in -- Refl --powerOneNeutral : (base : Nat) -> power base 1 = base --powerOneNeutral base = rewrite multCommutative base 1 in multOneLeftNeutral base -- --powerOneSuccOne : (exp : Nat) -> power 1 exp = 1 --powerOneSuccOne Z = Refl --powerOneSuccOne (S exp) = rewrite powerOneSuccOne exp in Refl -- --powerPowerMultPower : (base, exp, exp' : Nat) -> -- power (power base exp) exp' = power base (exp * exp') --powerPowerMultPower _ exp Z = rewrite multZeroRightZero exp in Refl --powerPowerMultPower base exp (S exp') = -- rewrite powerPowerMultPower base exp exp' in -- rewrite multRightSuccPlus exp exp' in -- rewrite sym $ multPowerPowerPlus base exp (exp * exp') in -- Refl -- minimum / maximum proofs export maximumAssociative : (l, c, r : Nat) -> maximum l (maximum c r) = maximum (maximum l c) r maximumAssociative Z _ _ = Refl maximumAssociative (S _) Z _ = Refl maximumAssociative (S _) (S _) Z = Refl maximumAssociative (S k) (S j) (S i) = rewrite maximumAssociative k j i in Refl export maximumCommutative : (l, r : Nat) -> maximum l r = maximum r l maximumCommutative Z Z = Refl maximumCommutative Z (S _) = Refl maximumCommutative (S _) Z = Refl maximumCommutative (S k) (S j) = rewrite maximumCommutative k j in Refl export maximumIdempotent : (n : Nat) -> maximum n n = n maximumIdempotent Z = Refl maximumIdempotent (S k) = cong S $ maximumIdempotent k export maximumLeftUpperBound : (m, n : Nat) -> m `LTE` maximum m n maximumLeftUpperBound 0 n = LTEZero maximumLeftUpperBound (S m) 0 = reflexive maximumLeftUpperBound (S m) (S n) = LTESucc (maximumLeftUpperBound m n) export maximumRightUpperBound : (m, n : Nat) -> n `LTE` maximum m n maximumRightUpperBound 0 n = reflexive maximumRightUpperBound (S m) 0 = LTEZero maximumRightUpperBound (S m) (S n) = LTESucc (maximumRightUpperBound m n) export minimumAssociative : (l, c, r : Nat) -> minimum l (minimum c r) = minimum (minimum l c) r minimumAssociative Z _ _ = Refl minimumAssociative (S _) Z _ = Refl minimumAssociative (S _) (S _) Z = Refl minimumAssociative (S k) (S j) (S i) = rewrite minimumAssociative k j i in Refl export minimumCommutative : (l, r : Nat) -> minimum l r = minimum r l minimumCommutative Z Z = Refl minimumCommutative Z (S _) = Refl minimumCommutative (S _) Z = Refl minimumCommutative (S k) (S j) = rewrite minimumCommutative k j in Refl export minimumIdempotent : (n : Nat) -> minimum n n = n minimumIdempotent Z = Refl minimumIdempotent (S k) = cong S $ minimumIdempotent k export minimumZeroZeroLeft : (left : Nat) -> minimum left 0 = Z minimumZeroZeroLeft left = rewrite minimumCommutative left 0 in Refl export minimumSuccSucc : (left, right : Nat) -> minimum (S left) (S right) = S (minimum left right) minimumSuccSucc _ _ = Refl export maximumZeroNLeft : (left : Nat) -> maximum left Z = left maximumZeroNLeft left = rewrite maximumCommutative left Z in Refl export maximumSuccSucc : (left, right : Nat) -> S (maximum left right) = maximum (S left) (S right) maximumSuccSucc _ _ = Refl export sucMaxL : (l : Nat) -> maximum (S l) l = (S l) sucMaxL Z = Refl sucMaxL (S l) = cong S $ sucMaxL l export sucMaxR : (l : Nat) -> maximum l (S l) = (S l) sucMaxR Z = Refl sucMaxR (S l) = cong S $ sucMaxR l export sucMinL : (l : Nat) -> minimum (S l) l = l sucMinL Z = Refl sucMinL (S l) = cong S $ sucMinL l export sucMinR : (l : Nat) -> minimum l (S l) = l sucMinR Z = Refl sucMinR (S l) = cong S $ sucMinR l -- Algebra ----------------------------- namespace Monoid public export [Maximum] Monoid Nat using Semigroup.Maximum where neutral = 0