module Data.Monoid.Exponentiation import Data.Nat.Views import Syntax.PreorderReasoning %default total ------------------------------------------------------------------------ -- Implementations public export linear : Monoid a => a -> Nat -> a linear v Z = neutral linear v (S k) = v <+> linear v k public export modularRec : Monoid a => a -> HalfRec n -> a modularRec v HalfRecZ = neutral modularRec v (HalfRecEven _ acc) = let e = modularRec v acc in e <+> e modularRec v (HalfRecOdd _ acc) = let e = modularRec v acc in v <+> e <+> e public export modular : Monoid a => a -> Nat -> a modular v n = modularRec v (halfRec n) infixr 10 ^ public export (^) : Num a => a -> Nat -> a (^) = modular @{Multiplicative} ------------------------------------------------------------------------ -- Properties -- Not using `MonoidV` because it's cursed export linearPlusHomo : (mon : Monoid a) => -- good monoid (opAssoc : {0 x, y, z : a} -> ((x <+> y) <+> z) === (x <+> (y <+> z))) -> (neutralL : {0 x : a} -> (neutral @{mon} <+> x) === x) -> -- result (v : a) -> {m, n : Nat} -> (linear v m <+> linear v n) === linear v (m + n) linearPlusHomo opAssoc neutralL v = go m where go : (m : Nat) -> (linear v m <+> linear v n) === linear v (m + n) go Z = neutralL go (S m) = Calc $ |~ (v <+> linear v m) <+> linear v n ~~ v <+> (linear v m <+> linear v n) ...( opAssoc ) ~~ v <+> (linear v (m + n)) ...( cong (v <+>) (go m) ) export modularRecCorrect : (mon : Monoid a) => -- good monoid (opAssoc : {0 x, y, z : a} -> ((x <+> y) <+> z) === (x <+> (y <+> z))) -> (neutralL : {0 x : a} -> (neutral @{mon} <+> x) === x) -> -- result (v : a) -> {n : Nat} -> (p : HalfRec n) -> modularRec v p === linear v n modularRecCorrect opAssoc neutralL v acc = go acc where aux : {m, n : Nat} -> (linear v m <+> linear v n) === linear v (m + n) aux = linearPlusHomo opAssoc neutralL v go : {n : Nat} -> (p : HalfRec n) -> modularRec v p === linear v n go HalfRecZ = Refl go (HalfRecEven k acc) = rewrite go acc in aux go (HalfRecOdd k acc) = rewrite go acc in Calc $ |~ (v <+> linear v k) <+> linear v k ~~ v <+> (linear v k <+> linear v k) ...( opAssoc ) ~~ v <+> (linear v (k + k)) ...( cong (v <+>) aux ) export modularCorrect : (mon : Monoid a) => -- good monoid (opAssoc : {0 x, y, z : a} -> ((x <+> y) <+> z) === (x <+> (y <+> z))) -> (neutralL : {0 x : a} -> (neutral @{mon} <+> x) === x) -> -- result (v : a) -> {n : Nat} -> modular v n === linear v n modularCorrect opAssoc neutralL v = modularRecCorrect opAssoc neutralL v (halfRec n)