module Data.SortedMap -- TODO: write split private data Tree : Nat -> (k : Type) -> Type -> Ord k -> Type where Leaf : k -> v -> Tree Z k v o Branch2 : Tree n k v o -> k -> Tree n k v o -> Tree (S n) k v o Branch3 : Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> Tree (S n) k v o branch4 : Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> Tree (S (S n)) k v o branch4 a b c d e f g = Branch2 (Branch2 a b c) d (Branch2 e f g) branch5 : Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> Tree (S (S n)) k v o branch5 a b c d e f g h i = Branch2 (Branch2 a b c) d (Branch3 e f g h i) branch6 : Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> Tree (S (S n)) k v o branch6 a b c d e f g h i j k = Branch3 (Branch2 a b c) d (Branch2 e f g) h (Branch2 i j k) branch7 : Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> k -> Tree n k v o -> Tree (S (S n)) k v o branch7 a b c d e f g h i j k l m = Branch3 (Branch3 a b c d e) f (Branch2 g h i) j (Branch2 k l m) merge1 : Tree n k v o -> k -> Tree (S n) k v o -> k -> Tree (S n) k v o -> Tree (S (S n)) k v o merge1 a b (Branch2 c d e) f (Branch2 g h i) = branch5 a b c d e f g h i merge1 a b (Branch2 c d e) f (Branch3 g h i j k) = branch6 a b c d e f g h i j k merge1 a b (Branch3 c d e f g) h (Branch2 i j k) = branch6 a b c d e f g h i j k merge1 a b (Branch3 c d e f g) h (Branch3 i j k l m) = branch7 a b c d e f g h i j k l m merge2 : Tree (S n) k v o -> k -> Tree n k v o -> k -> Tree (S n) k v o -> Tree (S (S n)) k v o merge2 (Branch2 a b c) d e f (Branch2 g h i) = branch5 a b c d e f g h i merge2 (Branch2 a b c) d e f (Branch3 g h i j k) = branch6 a b c d e f g h i j k merge2 (Branch3 a b c d e) f g h (Branch2 i j k) = branch6 a b c d e f g h i j k merge2 (Branch3 a b c d e) f g h (Branch3 i j k l m) = branch7 a b c d e f g h i j k l m merge3 : Tree (S n) k v o -> k -> Tree (S n) k v o -> k -> Tree n k v o -> Tree (S (S n)) k v o merge3 (Branch2 a b c) d (Branch2 e f g) h i = branch5 a b c d e f g h i merge3 (Branch2 a b c) d (Branch3 e f g h i) j k = branch6 a b c d e f g h i j k merge3 (Branch3 a b c d e) f (Branch2 g h i) j k = branch6 a b c d e f g h i j k merge3 (Branch3 a b c d e) f (Branch3 g h i j k) l m = branch7 a b c d e f g h i j k l m treeLookup : Ord k => k -> Tree n k v o -> Maybe v treeLookup k (Leaf k' v) = if k == k' then Just v else Nothing treeLookup k (Branch2 t1 k' t2) = if k <= k' then treeLookup k t1 else treeLookup k t2 treeLookup k (Branch3 t1 k1 t2 k2 t3) = if k <= k1 then treeLookup k t1 else if k <= k2 then treeLookup k t2 else treeLookup k t3 treeInsert' : Ord k => k -> v -> Tree n k v o -> Either (Tree n k v o) (Tree n k v o, k, Tree n k v o) treeInsert' k v (Leaf k' v') = case compare k k' of LT => Right (Leaf k v, k, Leaf k' v') EQ => Left (Leaf k v) GT => Right (Leaf k' v', k', Leaf k v) treeInsert' k v (Branch2 t1 k' t2) = if k <= k' then case treeInsert' k v t1 of Left t1' => Left (Branch2 t1' k' t2) Right (a, b, c) => Left (Branch3 a b c k' t2) else case treeInsert' k v t2 of Left t2' => Left (Branch2 t1 k' t2') Right (a, b, c) => Left (Branch3 t1 k' a b c) treeInsert' k v (Branch3 t1 k1 t2 k2 t3) = if k <= k1 then case treeInsert' k v t1 of Left t1' => Left (Branch3 t1' k1 t2 k2 t3) Right (a, b, c) => Right (Branch2 a b c, k1, Branch2 t2 k2 t3) else if k <= k2 then case treeInsert' k v t2 of Left t2' => Left (Branch3 t1 k1 t2' k2 t3) Right (a, b, c) => Right (Branch2 t1 k1 a, b, Branch2 c k2 t3) else case treeInsert' k v t3 of Left t3' => Left (Branch3 t1 k1 t2 k2 t3') Right (a, b, c) => Right (Branch2 t1 k1 t2, k2, Branch2 a b c) treeInsert : Ord k => k -> v -> Tree n k v o -> Either (Tree n k v o) (Tree (S n) k v o) treeInsert k v t = case treeInsert' k v t of Left t' => Left t' Right (a, b, c) => Right (Branch2 a b c) delType : Nat -> (k : Type) -> Type -> Ord k -> Type delType Z k v o = () delType (S n) k v o = Tree n k v o treeDelete : Ord k => (n : Nat) -> k -> Tree n k v o -> Either (Tree n k v o) (delType n k v o) treeDelete _ k (Leaf k' v) = if k == k' then Right () else Left (Leaf k' v) treeDelete (S Z) k (Branch2 t1 k' t2) = if k <= k' then case treeDelete Z k t1 of Left t1' => Left (Branch2 t1' k' t2) Right () => Right t2 else case treeDelete Z k t2 of Left t2' => Left (Branch2 t1 k' t2') Right () => Right t1 treeDelete (S Z) k (Branch3 t1 k1 t2 k2 t3) = if k <= k1 then case treeDelete Z k t1 of Left t1' => Left (Branch3 t1' k1 t2 k2 t3) Right () => Left (Branch2 t2 k2 t3) else if k <= k2 then case treeDelete Z k t2 of Left t2' => Left (Branch3 t1 k1 t2' k2 t3) Right () => Left (Branch2 t1 k1 t3) else case treeDelete Z k t3 of Left t3' => Left (Branch3 t1 k1 t2 k2 t3') Right () => Left (Branch2 t1 k1 t2) treeDelete (S (S n)) k (Branch2 t1 k' t2) = if k <= k' then case treeDelete (S n) k t1 of Left t1' => Left (Branch2 t1' k' t2) Right t1' => case t2 of Branch2 a b c => Right (Branch3 t1' k' a b c) Branch3 a b c d e => Left (branch4 t1' k' a b c d e) else case treeDelete (S n) k t2 of Left t2' => Left (Branch2 t1 k' t2') Right t2' => case t1 of Branch2 a b c => Right (Branch3 a b c k' t2') Branch3 a b c d e => Left (branch4 a b c d e k' t2') treeDelete (S (S n)) k (Branch3 t1 k1 t2 k2 t3) = if k <= k1 then case treeDelete (S n) k t1 of Left t1' => Left (Branch3 t1' k1 t2 k2 t3) Right t1' => Left (merge1 t1' k1 t2 k2 t3) else if k <= k2 then case treeDelete (S n) k t2 of Left t2' => Left (Branch3 t1 k1 t2' k2 t3) Right t2' => Left (merge2 t1 k1 t2' k2 t3) else case treeDelete (S n) k t3 of Left t3' => Left (Branch3 t1 k1 t2 k2 t3') Right t3' => Left (merge3 t1 k1 t2 k2 t3') treeToList : Tree n k v o -> List (k, v) treeToList = treeToList' (:: []) where -- explicit quantification to avoid conflation with {n} from treeToList treeToList' : {0 n : Nat} -> ((k, v) -> List (k, v)) -> Tree n k v o -> List (k, v) treeToList' cont (Leaf k v) = cont (k, v) treeToList' cont (Branch2 t1 _ t2) = treeToList' (:: treeToList' cont t2) t1 treeToList' cont (Branch3 t1 _ t2 _ t3) = treeToList' (:: treeToList' (:: treeToList' cont t3) t2) t1 export data SortedMap : Type -> Type -> Type where Empty : Ord k => SortedMap k v M : (o : Ord k) => (n:Nat) -> Tree n k v o -> SortedMap k v export empty : Ord k => SortedMap k v empty = Empty export lookup : k -> SortedMap k v -> Maybe v lookup _ Empty = Nothing lookup k (M _ t) = treeLookup k t export insert : k -> v -> SortedMap k v -> SortedMap k v insert k v Empty = M Z (Leaf k v) insert k v (M _ t) = case treeInsert k v t of Left t' => (M _ t') Right t' => (M _ t') export singleton : Ord k => k -> v -> SortedMap k v singleton k v = insert k v empty export insertFrom : Foldable f => f (k, v) -> SortedMap k v -> SortedMap k v insertFrom = flip $ foldl $ flip $ uncurry insert export delete : k -> SortedMap k v -> SortedMap k v delete _ Empty = Empty delete k (M Z t) = case treeDelete Z k t of Left t' => (M _ t') Right () => Empty delete k (M (S n) t) = case treeDelete (S n) k t of Left t' => (M _ t') Right t' => (M _ t') export fromList : Ord k => List (k, v) -> SortedMap k v fromList l = foldl (flip (uncurry insert)) empty l export toList : SortedMap k v -> List (k, v) toList Empty = [] toList (M _ t) = treeToList t ||| Gets the keys of the map. export keys : SortedMap k v -> List k keys = map fst . toList ||| Gets the values of the map. Could contain duplicates. export values : SortedMap k v -> List v values = map snd . toList treeMap : (a -> b) -> Tree n k a o -> Tree n k b o treeMap f (Leaf k v) = Leaf k (f v) treeMap f (Branch2 t1 k t2) = Branch2 (treeMap f t1) k (treeMap f t2) treeMap f (Branch3 t1 k1 t2 k2 t3) = Branch3 (treeMap f t1) k1 (treeMap f t2) k2 (treeMap f t3) treeTraverse : Applicative f => (a -> f b) -> Tree n k a o -> f (Tree n k b o) treeTraverse f (Leaf k v) = Leaf k <$> f v treeTraverse f (Branch2 t1 k t2) = Branch2 <$> treeTraverse f t1 <*> pure k <*> treeTraverse f t2 treeTraverse f (Branch3 t1 k1 t2 k2 t3) = Branch3 <$> treeTraverse f t1 <*> pure k1 <*> treeTraverse f t2 <*> pure k2 <*> treeTraverse f t3 export implementation Functor (SortedMap k) where map _ Empty = Empty map f (M n t) = M _ (treeMap f t) export implementation Foldable (SortedMap k) where foldr f z = foldr f z . values null Empty = True null (M _ _) = False export implementation Traversable (SortedMap k) where traverse _ Empty = pure Empty traverse f (M n t) = M _ <$> treeTraverse f t ||| Merge two maps. When encountering duplicate keys, using a function to combine the values. ||| Uses the ordering of the first map given. export mergeWith : (v -> v -> v) -> SortedMap k v -> SortedMap k v -> SortedMap k v mergeWith f x y = insertFrom inserted x where inserted : List (k, v) inserted = do (k, v) <- toList y let v' = (maybe id f $ lookup k x) v pure (k, v') ||| Merge two maps using the Semigroup (and by extension, Monoid) operation. ||| Uses mergeWith internally, so the ordering of the left map is kept. export merge : Semigroup v => SortedMap k v -> SortedMap k v -> SortedMap k v merge = mergeWith (<+>) ||| Left-biased merge, also keeps the ordering specified by the left map. export mergeLeft : SortedMap k v -> SortedMap k v -> SortedMap k v mergeLeft = mergeWith const export (Show k, Show v) => Show (SortedMap k v) where show m = "fromList " ++ (show $ toList m) export (Eq k, Eq v) => Eq (SortedMap k v) where (==) = (==) `on` toList -- TODO: is this the right variant of merge to use for this? I think it is, but -- I could also see the advantages of using `mergeLeft`. The current approach is -- strictly more powerful I believe, because `mergeLeft` can be emulated with -- the `First` monoid. However, this does require more code to do the same -- thing. export Semigroup v => Semigroup (SortedMap k v) where (<+>) = merge ||| For `neutral <+> y`, y is rebuilt in `Ord k`, so this is not a "strict" Monoid. ||| However, semantically, it should be equal. export (Ord k, Semigroup v) => Monoid (SortedMap k v) where neutral = empty