||| Deriving functor instances using reflection ||| You can for instance define: ||| ``` ||| data Tree a = Leaf a | Node (Tree a) (Tree a) ||| treeFunctor : Functor Tree ||| treeFunctor = %runElab derive ||| ``` module Deriving.Functor import public Control.Monad.Either import public Control.Monad.State import public Data.Maybe import public Decidable.Equality import public Language.Reflection import public Deriving.Common %language ElabReflection %default total ------------------------------------------------------------------------------ -- Errors ||| Possible errors for the functor-deriving machinery. public export data Error : Type where NotFreeOf : Name -> TTImp -> Error NegativeOccurrence : Name -> TTImp -> Error NotAnApplication : TTImp -> Error NotAFunctor : TTImp -> Error NotABifunctor : TTImp -> Error NotAFunctorInItsLastArg : TTImp -> Error UnsupportedType : TTImp -> Error InvalidGoal : Error ConfusingReturnType : Error -- Contextual information WhenCheckingConstructor : Name -> Error -> Error WhenCheckingArg : TTImp -> Error -> Error export Show Error where show = joinBy "\n" . go [<] where go : SnocList String -> Error -> List String go acc (NotFreeOf x ty) = acc <>> ["The term \{show ty} is not free of \{show x}"] go acc (NegativeOccurrence a ty) = acc <>> ["Negative occurrence of \{show a} in \{show ty}"] go acc (NotAnApplication s) = acc <>> ["The type \{show s} is not an application"] go acc (NotAFunctor s) = acc <>> ["Couldn't find a `Functor' instance for the type constructor \{show s}"] go acc (NotABifunctor s) = acc <>> ["Couldn't find a `Bifunctor' instance for the type constructor \{show s}"] go acc (NotAFunctorInItsLastArg s) = acc <>> ["Not a functor in its last argument \{show s}"] go acc (UnsupportedType s) = acc <>> ["Unsupported type \{show s}"] go acc InvalidGoal = acc <>> ["Expected a goal of the form `Functor f`"] go acc ConfusingReturnType = acc <>> ["Confusing telescope"] go acc (WhenCheckingConstructor nm err) = go (acc :< "When checking constructor \{show nm}") err go acc (WhenCheckingArg s err) = go (acc :< "When checking argument of type \{show s}") err ------------------------------------------------------------------------------ -- Core machinery: being functorial -- Not meant to be re-exported as it's using the internal notion of error isFreeOf' : {0 m : Type -> Type} -> {auto elab : Elaboration m} -> {auto error : MonadError Error m} -> (x : Name) -> (ty : TTImp) -> m (IsFreeOf x ty) isFreeOf' x ty = case isFreeOf x ty of Nothing => throwError (NotFreeOf x ty) Just prf => pure prf public export data Polarity = Positive | Negative public export not : Polarity -> Polarity not Positive = Negative not Negative = Positive ||| IsFunctorialIn is parametrised by ||| @ pol the polarity of the type being analysed. We start in positive polarity ||| where occurrences of x are allowed and negate the polarity every time ||| we step into the domain of a Pi type. ||| @ t the name of the data type whose constructors are being analysed ||| @ x the name of the type variable that the functioral action will change ||| @ ty the type being analysed ||| The inductive type delivers a proof that x occurs positively in ty, ||| assuming that t also is positive. public export data IsFunctorialIn : (pol : Polarity) -> (t, x : Name) -> (ty : TTImp) -> Type where ||| The type variable x occurs alone FIVar : IsFunctorialIn Positive t x (IVar fc x) ||| There is a recursive subtree of type (t a1 ... an u) and u is functorial in x. ||| We do not insist that u is exactly x so that we can deal with nested types ||| like the following: ||| data Full a = Leaf a | Node (Full (a, a)) ||| data Term a = Var a | App (Term a) (Term a) | Lam (Term (Maybe a)) FIRec : (0 _ : IsAppView (_, t) _ f) -> IsFunctorialIn pol t x arg -> IsFunctorialIn Positive t x (IApp fc f arg) ||| The subterm is delayed (either Inf or Lazy) FIDelayed : IsFunctorialIn pol t x ty -> IsFunctorialIn pol t x (IDelayed fc lr ty) ||| There are nested subtrees somewhere inside a 3rd party type constructor ||| which satisfies the Bifunctor interface FIBifun : IsFreeOf x sp -> HasImplementation Bifunctor sp -> IsFunctorialIn pol t x arg1 -> Either (IsFunctorialIn pol t x arg2) (IsFreeOf x arg2) -> IsFunctorialIn pol t x (IApp fc1 (IApp fc2 sp arg1) arg2) ||| There are nested subtrees somewhere inside a 3rd party type constructor ||| which satisfies the Functor interface FIFun : IsFreeOf x sp -> HasImplementation Functor sp -> IsFunctorialIn pol t x arg -> IsFunctorialIn pol t x (IApp fc sp arg) ||| A pi type, with no negative occurrence of x in its domain FIPi : IsFunctorialIn (not pol) t x a -> IsFunctorialIn pol t x b -> IsFunctorialIn pol t x (IPi fc rig pinfo nm a b) ||| A type free of x is trivially Functorial in it FIFree : IsFreeOf x a -> IsFunctorialIn pol t x a record Parameters where constructor MkParameters asFunctors : List Nat asBifunctors : List Nat initParameters : Parameters initParameters = MkParameters [] [] paramConstraints : Parameters -> Nat -> Maybe TTImp paramConstraints params pos = IVar emptyFC `{Prelude.Interfaces.Functor} <$ guard (pos `elem` params.asFunctors) <|> IVar emptyFC `{Prelude.Interfaces.Bifunctor} <$ guard (pos `elem` params.asBifunctors) parameters {0 m : Type -> Type} {auto elab : Elaboration m} {auto error : MonadError Error m} {auto cs : MonadState Parameters m} (t : Name) (ps : List (Name, Nat)) (x : Name) ||| When analysing the type of a constructor for the type family t, ||| we hope to observe ||| 1. either that it is functorial in x ||| 2. or that it is free of x ||| If if it is not the case, we will use the `MonadError Error` constraint ||| to fail with an informative message. public export TypeView : Polarity -> TTImp -> Type TypeView pol ty = Either (IsFunctorialIn pol t x ty) (IsFreeOf x ty) export fromTypeView : TypeView pol ty -> IsFunctorialIn pol t x ty fromTypeView (Left prf) = prf fromTypeView (Right fo) = FIFree fo ||| Hoping to observe that ty is functorial export typeView : {pol : Polarity} -> (ty : TTImp) -> m (TypeView pol ty) ||| To avoid code duplication in typeView, we have an auxiliary function ||| specifically to handle the application case typeAppView : {fc : FC} -> {pol : Polarity} -> {f : TTImp} -> IsFreeOf x f -> (arg : TTImp) -> m (TypeView pol (IApp fc f arg)) typeAppView {fc, pol, f} isFO arg = do chka <- typeView arg case chka of -- if x is present in the argument then the function better be: -- 1. free of x -- 2. either an occurrence of t i.e. a subterm -- or a type constructor already known to be functorial Left sp => do let Just (MkAppView (_, hd) ts prf) = appView f | _ => throwError (NotAnApplication f) case decEq t hd of Yes Refl => case pol of Positive => pure $ Left (FIRec prf sp) Negative => throwError (NegativeOccurrence t (IApp fc f arg)) No diff => case !(hasImplementation Functor f) of Just prf => pure (Left (FIFun isFO prf sp)) Nothing => case lookup hd ps of Just n => do -- record that the nth parameter should be functorial ns <- gets asFunctors let ns = ifThenElse (n `elem` ns) ns (n :: ns) modify { asFunctors := ns } -- and happily succeed logMsg "derive.functor.assumption" 10 $ "I am assuming that the parameter \{show hd} is a Functor" pure (Left (FIFun isFO assert_hasImplementation sp)) Nothing => throwError (NotAFunctor f) -- Otherwise it better be the case that f is also free of x so that -- we can mark the whole type as being x-free. Right fo => do Right _ <- typeView {pol} f | _ => throwError $ case pol of Positive => NotAFunctorInItsLastArg (IApp fc f arg) Negative => NegativeOccurrence x (IApp fc f arg) pure (Right assert_IsFreeOf) typeView {pol} tm@(IVar fc y) = case decEq x y of Yes Refl => case pol of Positive => pure (Left FIVar) Negative => throwError (NegativeOccurrence x tm) No _ => pure (Right assert_IsFreeOf) typeView ty@(IPi fc rig pinfo nm a b) = do va <- typeView a vb <- typeView b pure $ case (va, vb) of (_, Left sp) => Left (FIPi (fromTypeView va) sp) (Left sp, _) => Left (FIPi sp (fromTypeView vb)) (Right _, Right _) => Right assert_IsFreeOf typeView fab@(IApp _ (IApp fc1 f arg1) arg2) = do chka1 <- typeView arg1 case chka1 of Right _ => do isFO <- isFreeOf' x (IApp _ f arg1) typeAppView {f = assert_smaller fab (IApp _ f arg1)} isFO arg2 Left sp => do isFO <- isFreeOf' x f case !(hasImplementation Bifunctor f) of Just prf => pure (Left (FIBifun isFO prf sp !(typeView arg2))) Nothing => do let Just (MkAppView (_, hd) ts prf) = appView f | _ => throwError (NotAnApplication f) case lookup hd ps of Just n => do -- record that the nth parameter should be bifunctorial ns <- gets asBifunctors let ns = ifThenElse (n `elem` ns) ns (n :: ns) modify { asBifunctors := ns } -- and happily succeed logMsg "derive.functor.assumption" 10 $ "I am assuming that the parameter \{show hd} is a Bifunctor" pure (Left (FIBifun isFO assert_hasImplementation sp !(typeView arg2))) Nothing => throwError (NotABifunctor f) typeView (IApp _ f arg) = do isFO <- isFreeOf' x f typeAppView isFO arg typeView (IDelayed _ lz f) = pure $ case !(typeView f) of Left sp => Left (FIDelayed sp) Right _ => Right assert_IsFreeOf typeView (IPrimVal _ _) = pure (Right assert_IsFreeOf) typeView (IType _) = pure (Right assert_IsFreeOf) typeView ty = throwError (UnsupportedType ty) ------------------------------------------------------------------------------ -- Core machinery: building the mapping function from an IsFunctorialIn proof parameters (fc : FC) (mutualWith : List Name) ||| functorFun takes ||| @ mutualWith a list of mutually defined type constructors. Calls to their ||| respective mapping functions typically need an assert_total because the ||| termination checker is not doing enough inlining to see that things are ||| terminating ||| @ assert records whether we should mark recursive calls as total because ||| we are currently constructing the argument to a higher order function ||| which will obscure the termination argument. Starts as `Nothing`, becomes ||| `Just False` if an `assert_total` has already been inserted. ||| @ ty the type being transformed by the mapping function ||| @ rec the name of the mapping function being defined (used for recursive calls) ||| @ f the name of the function we're mapping ||| @ arg the (optional) name of the argument being mapped over. This lets us use ||| Nothing when generating arguments to higher order functions so that we generate ||| the eta contracted `map (mapTree f)` instead of `map (\ ts => mapTree f ts)`. functorFun : (assert : Maybe Bool) -> {ty : TTImp} -> IsFunctorialIn pol t x ty -> (rec, f : Name) -> (arg : Maybe TTImp) -> TTImp functorFun assert FIVar rec f t = apply fc (IVar fc f) (toList t) functorFun assert (FIRec y sp) rec f t -- only add assert_total if it is declared to be needed = ifThenElse (fromMaybe False assert) (IApp fc (IVar fc (UN $ Basic "assert_total"))) id $ apply fc (IVar fc rec) (functorFun (Just False) sp rec f Nothing :: toList t) functorFun assert (FIDelayed sp) rec f Nothing -- here we need to eta-expand to avoid "Lazy t does not unify with t" errors = let nm = UN $ Basic "eta" in ILam fc MW ExplicitArg (Just nm) (Implicit fc False) $ IDelay fc $ functorFun assert sp rec f (Just (IVar fc nm)) functorFun assert (FIDelayed sp) rec f (Just t) = IDelay fc $ functorFun assert sp rec f (Just t) functorFun assert {ty = IApp _ ty _} (FIFun _ _ sp) rec f t -- only add assert_total if we are calling a mutually defined Functor implementation. = let isMutual = fromMaybe False (appView ty >>= \ v => pure (snd v.head `elem` mutualWith)) in ifThenElse isMutual (IApp fc (IVar fc (UN $ Basic "assert_total"))) id $ apply fc (IVar fc (UN $ Basic "map")) (functorFun ((False <$ guard isMutual) <|> assert <|> Just True) sp rec f Nothing :: toList t) functorFun assert (FIBifun _ _ sp1 (Left sp2)) rec f t = apply fc (IVar fc (UN $ Basic "bimap")) (functorFun (assert <|> Just True) sp1 rec f Nothing :: functorFun (assert <|> Just True) sp2 rec f Nothing :: toList t) functorFun assert (FIBifun _ _ sp (Right _)) rec f t = apply fc (IVar fc (UN $ Basic "mapFst")) (functorFun (assert <|> Just True) sp rec f Nothing :: toList t) functorFun assert (FIPi {rig, pinfo, nm} dn sp) rec f t = optionallyEta fc t $ \ arg => let nm = fromMaybe (UN $ Basic "x") nm in -- /!\ We cannot use the type stored in FIPi here because it could just -- be a name that will happen to be different when bound on the LHS! -- Cf. the Free test case in reflection017 ILam fc rig pinfo (Just nm) (Implicit fc False) $ functorFun assert sp rec f $ Just $ IApp fc arg $ functorFun assert dn rec f (Just (IVar fc nm)) functorFun assert (FIFree y) rec f t = fromMaybe `(id) t ------------------------------------------------------------------------------ -- User-facing: Functor deriving namespace Functor derive' : (Elaboration m, MonadError Error m) => {default Private vis : Visibility} -> {default Total treq : TotalReq} -> {default [] mutualWith : List Name} -> m (Functor f) derive' = do -- expand the mutualwith names to have the internal, fully qualified, names mutualWith <- map concat $ for mutualWith $ \ nm => do ntys <- getType nm pure (fst <$> ntys) -- The goal should have the shape (Functor t) Just (IApp _ (IVar _ functor) t) <- goal | _ => throwError InvalidGoal when (`{Prelude.Interfaces.Functor} /= functor) $ logMsg "derive.functor" 1 "Expected to derive Functor but got \{show functor}" -- t should be a type constructor logMsg "derive.functor" 1 "Deriving Functor for \{showPrec App $ mapTTImp cleanup t}" MkIsType f params cs <- isType t logMsg "derive.functor.constructors" 1 $ joinBy "\n" $ "" :: map (\ (n, ty) => " \{showPrefix True $ dropNS n} : \{show $ mapTTImp cleanup ty}") cs -- Generate a clause for each data constructor let fc = emptyFC let un = UN . Basic let mapName = un ("map" ++ show (dropNS f)) let funName = un "f" let fun = IVar fc funName (ns, cls) <- runStateT {m = m} initParameters $ for cs $ \ (cName, ty) => withError (WhenCheckingConstructor cName) $ do -- Grab the types of the constructor's explicit arguments let Just (MkConstructorView (paraz :< (para, _)) args) = constructorView ty | _ => throwError ConfusingReturnType let paras = paraz <>> [] logMsg "derive.functor.clauses" 10 $ "\{showPrefix True (dropNS cName)} (\{joinBy ", " (map (showPrec Dollar . mapTTImp cleanup . unArg . snd) args)})" let vars = map (map (IVar fc . un . ("x" ++) . show . (`minus` 1))) $ zipWith (<$) [1..length args] (map snd args) -- only keep the arguments that are either: -- 1. modified by map -- 2. explicit recs <- for (zip vars args) $ \ (v, (rig, arg)) => do res <- withError (WhenCheckingArg (mapTTImp cleanup $ unArg arg)) $ typeView {pol = Positive} f paras para (unArg arg) pure $ case res of Left sp => -- do not bother with assert_total if you're generating -- a covering/partial definition let useTot = False <$ guard (treq /= Total) in pure (v, functorFun fc mutualWith useTot sp mapName funName . Just <$> v) Right free => do ignore $ isExplicit v pure (v, v) let (vars, recs) = unzip (catMaybes recs) pure $ PatClause fc (apply fc (IVar fc mapName) [ fun, apply (IVar fc cName) vars]) (apply (IVar fc cName) recs) -- Generate the type of the mapping function let paramNames = unArg . fst <$> params let a = un $ freshName paramNames "a" let b = un $ freshName paramNames "b" let va = IVar fc a let vb = IVar fc b logMsg "derive.functor.parameters" 20 $ unlines [ "Functors: \{show ns.asFunctors}" , "Bifunctors: \{show ns.asBifunctors}" , "Parameters: \{show (map (mapFst unArg) params)}" ] let ty = MkTy fc fc mapName $ withParams fc (paramConstraints ns) params $ IPi fc M0 ImplicitArg (Just a) (IType fc) $ IPi fc M0 ImplicitArg (Just b) (IType fc) $ `((~(va) -> ~(vb)) -> ~(t) ~(va) -> ~(t) ~(vb)) logMsg "derive.functor.clauses" 1 $ joinBy "\n" ("" :: (" " ++ show (mapITy cleanup ty)) :: map ((" " ++) . showClause InDecl . mapClause cleanup) cls) -- Define the instance check $ ILocal fc [ IClaim fc MW vis [Totality treq] ty , IDef fc mapName cls ] `(MkFunctor {f = ~(t)} ~(IVar fc mapName)) ||| Derive an implementation of Functor for a type constructor. ||| This can be used like so: ||| ``` ||| data Tree a = Leaf a | Node (Tree a) (Tree a) ||| treeFunctor : Functor Tree ||| treeFunctor = %runElab derive ||| ``` export derive : {default Private vis : Visibility} -> {default Total treq : TotalReq} -> {default [] mutualWith : List Name} -> Elab (Functor f) derive = do res <- runEitherT {e = Error, m = Elab} (derive' {vis, treq, mutualWith}) case res of Left err => fail (show err) Right prf => pure prf