module Data.Primitives.Views -- We need all the believe_mes and asserts throughout this file because we're -- working with primitive here! We also have separate implementations per -- primitive, rather than using interfaces, because we're only going to trust -- the primitive implementations. namespace IntegerV ||| View for expressing a number as a multiplication + a remainder public export data Divides : Integer -> (d : Integer) -> Type where DivByZero : Divides x 0 DivBy : (div, rem : _) -> (prf : rem >= 0 && rem < d = True) -> Divides ((d * div) + rem) d ||| Covering function for the `Divides` view public export divides : (val : Integer) -> (d : Integer) -> Divides val d divides val 0 = DivByZero divides val d = assert_total $ let dividend = if d < 0 then -(val `div` abs d) else val `div` d remainder = abs (val - dividend * d) in believe_me (DivBy {d} dividend remainder (believe_me (Refl {x = True}))) ||| View for recursion over Integers public export data IntegerRec : Integer -> Type where IntegerZ : IntegerRec 0 IntegerSucc : IntegerRec (n - 1) -> IntegerRec n IntegerPred : IntegerRec ((-n) + 1) -> IntegerRec (-n) ||| Covering function for `IntegerRec` public export integerRec : (x : Integer) -> IntegerRec x integerRec 0 = IntegerZ integerRec x = if x > 0 then IntegerSucc (assert_total (integerRec (x - 1))) else believe_me (IntegerPred {n = -x} (assert_total (believe_me (integerRec (x + 1))))) namespace IntV ||| View for expressing a number as a multiplication + a remainder public export data Divides : Int -> (d : Int) -> Type where DivByZero : IntV.Divides x 0 DivBy : (div, rem : _) -> (prf : rem >= 0 && rem < d = True) -> IntV.Divides ((d * div) + rem) d -- I have assumed, but not actually verified, that this will still -- give a right result (i.e. still adding up) when the Ints overflow. -- TODO: Someone please check this and fix if necessary... ||| Covering function for the `Divides` view public export divides : (val : Int) -> (d : Int) -> Divides val d divides val 0 = DivByZero divides val d = assert_total $ let dividend = if d < 0 then -(val `div` abs d) else val `div` d remainder = abs (val - dividend * d) in believe_me (DivBy {d} dividend remainder (believe_me (Refl {x = True}))) ||| View for recursion over Ints public export data IntRec : Int -> Type where IntZ : IntRec 0 IntSucc : IntRec (n - 1) -> IntRec n IntPred : IntRec ((-n) + 1) -> IntRec (-n) ||| Covering function for `IntRec` public export intRec : (x : Int) -> IntRec x intRec 0 = IntZ intRec x = if x > 0 then IntSucc (assert_total (intRec (x - 1))) else believe_me (IntPred {n = -x} (assert_total (believe_me (intRec (x + 1)))))