module Data.Strings import Data.List import Data.List1 %default total export singleton : Char -> String singleton c = strCons c "" partial foldr1 : (a -> a -> a) -> List a -> a foldr1 _ [x] = x foldr1 f (x::xs) = f x (foldr1 f xs) partial foldl1 : (a -> a -> a) -> List a -> a foldl1 f (x::xs) = foldl f x xs -- This function runs fast when compiled but won't compute at compile time. -- If you need to unpack strings at compile time, use Prelude.unpack. %foreign "scheme:string-unpack" "javascript:lambda:(str)=>__prim_js2idris_array(Array.from(str))" export fastUnpack : String -> List Char -- This works quickly because when string-concat builds the result, it allocates -- enough room in advance so there's only one allocation, rather than lots! -- -- Like fastUnpack, this function won't reduce at compile time. -- If you need to concatenate strings at compile time, use Prelude.concat. %foreign "scheme:string-concat" "javascript:lambda:(xs)=>''.concat(...__prim_idris2js_array(xs))" export fastConcat : List String -> String -- This is a deprecated alias for fastConcat for backwards compatibility -- (unfortunately, we don't have %deprecated yet). export fastAppend : List String -> String fastAppend = fastConcat ||| Splits a character list into a list of whitespace separated character lists. ||| ||| ```idris example ||| words' (unpack " A B C D E ") ||| ``` covering words' : List Char -> List (List Char) words' s = case dropWhile isSpace s of [] => [] s' => let (w, s'') = break isSpace s' in w :: words' s'' ||| Splits a string into a list of whitespace separated strings. ||| ||| ```idris example ||| words " A B C D E " ||| ``` export covering words : String -> List String words s = map pack (words' (unpack s)) ||| Joins the character lists by spaces into a single character list. ||| ||| ```idris example ||| unwords' [['A'], ['B', 'C'], ['D'], ['E']] ||| ``` unwords' : List (List Char) -> List Char unwords' [] = [] unwords' ws = assert_total (foldr1 addSpace ws) where addSpace : List Char -> List Char -> List Char addSpace w s = w ++ (' ' :: s) ||| Joins the strings by spaces into a single string. ||| ||| ```idris example ||| unwords ["A", "BC", "D", "E"] ||| ``` export unwords : List String -> String unwords = pack . unwords' . map unpack ||| Splits a character list into a list of newline separated character lists. ||| ||| ```idris example ||| lines' (unpack "\rA BC\nD\r\nE\n") ||| ``` lines' : List Char -> List (List Char) lines' [] = [] lines' s = case break isNL s of (l, s') => l :: case s' of [] => [] _ :: s'' => lines' (assert_smaller s s'') ||| Splits a string into a list of newline separated strings. ||| ||| ```idris example ||| lines "\rA BC\nD\r\nE\n" ||| ``` export lines : String -> List String lines s = map pack (lines' (unpack s)) ||| Joins the character lists by newlines into a single character list. ||| ||| ```idris example ||| unlines' [['l','i','n','e'], ['l','i','n','e','2'], ['l','n','3'], ['D']] ||| ``` unlines' : List (List Char) -> List Char unlines' [] = [] unlines' (l::ls) = l ++ '\n' :: unlines' ls ||| Joins the strings by newlines into a single string. ||| ||| ```idris example ||| unlines ["line", "line2", "ln3", "D"] ||| ``` export unlines : List String -> String unlines = pack . unlines' . map unpack ||| A view checking whether a string is empty ||| and, if not, returning its head and tail public export data StrM : String -> Type where StrNil : StrM "" StrCons : (x : Char) -> (xs : String) -> StrM (strCons x xs) ||| To each string we can associate its StrM view public export strM : (x : String) -> StrM x strM "" = StrNil strM x -- Using primitives, so `assert_total` and `believe_me` needed = assert_total $ believe_me $ StrCons (prim__strHead x) (prim__strTail x) ||| A view of a string as a lazy linked list of characters public export data AsList : String -> Type where Nil : AsList "" (::) : (c : Char) -> {str : String} -> Lazy (AsList str) -> AsList (strCons c str) ||| To each string we can associate the lazy linked list of characters ||| it corresponds to once unpacked. public export asList : (str : String) -> AsList str asList str with (strM str) asList "" | StrNil = [] asList str@(strCons x xs) | StrCons _ _ = x :: asList (assert_smaller str xs) ||| Trim whitespace on the left of the string export ltrim : String -> String ltrim str with (asList str) ltrim "" | [] = "" ltrim str@_ | x :: xs = if isSpace x then ltrim _ | xs else str ||| Trim whitespace on both sides of the string export trim : String -> String trim = ltrim . reverse . ltrim . reverse ||| Splits the string into a part before the predicate ||| returns False and the rest of the string. ||| ||| ```idris example ||| span (/= 'C') "ABCD" ||| ``` ||| ```idris example ||| span (/= 'C') "EFGH" ||| ``` export span : (Char -> Bool) -> String -> (String, String) span p xs = case span p (unpack xs) of (x, y) => (pack x, pack y) ||| Splits the string into a part before the predicate ||| returns True and the rest of the string. ||| ||| ```idris example ||| break (== 'C') "ABCD" ||| ``` ||| ```idris example ||| break (== 'C') "EFGH" ||| ``` public export break : (Char -> Bool) -> String -> (String, String) break p = span (not . p) ||| Splits the string into parts with the predicate ||| indicating separator characters. ||| ||| ```idris example ||| split (== '.') ".AB.C..D" ||| ``` public export split : (Char -> Bool) -> String -> List1 String split p xs = map pack (split p (unpack xs)) export stringToNatOrZ : String -> Nat stringToNatOrZ = fromInteger . prim__cast_StringInteger export toUpper : String -> String toUpper str = pack (map toUpper (unpack str)) export toLower : String -> String toLower str = pack (map toLower (unpack str)) export partial strIndex : String -> Int -> Char strIndex = prim__strIndex export partial strLength : String -> Int strLength = prim__strLength export partial strSubstr : Int -> Int -> String -> String strSubstr = prim__strSubstr export partial strTail : String -> String strTail = prim__strTail export isPrefixOf : String -> String -> Bool isPrefixOf a b = isPrefixOf (unpack a) (unpack b) export isSuffixOf : String -> String -> Bool isSuffixOf a b = isSuffixOf (unpack a) (unpack b) export isInfixOf : String -> String -> Bool isInfixOf a b = isInfixOf (unpack a) (unpack b) parseNumWithoutSign : List Char -> Integer -> Maybe Integer parseNumWithoutSign [] acc = Just acc parseNumWithoutSign (c :: cs) acc = if (c >= '0' && c <= '9') then parseNumWithoutSign cs ((acc * 10) + (cast ((ord c) - (ord '0')))) else Nothing ||| Convert a positive number string to a Num. ||| ||| ```idris example ||| parsePositive "123" ||| ``` ||| ```idris example ||| parsePositive {a=Int} " +123" ||| ``` public export parsePositive : Num a => String -> Maybe a parsePositive s = parsePosTrimmed (trim s) where parsePosTrimmed : String -> Maybe a parsePosTrimmed s with (strM s) parsePosTrimmed "" | StrNil = Nothing parsePosTrimmed (strCons '+' xs) | (StrCons '+' xs) = map fromInteger (parseNumWithoutSign (unpack xs) 0) parsePosTrimmed (strCons x xs) | (StrCons x xs) = if (x >= '0' && x <= '9') then map fromInteger (parseNumWithoutSign (unpack xs) (cast (ord x - ord '0'))) else Nothing ||| Convert a number string to a Num. ||| ||| ```idris example ||| parseInteger " 123" ||| ``` ||| ```idris example ||| parseInteger {a=Int} " -123" ||| ``` public export parseInteger : (Num a, Neg a) => String -> Maybe a parseInteger s = parseIntTrimmed (trim s) where parseIntTrimmed : String -> Maybe a parseIntTrimmed s with (strM s) parseIntTrimmed "" | StrNil = Nothing parseIntTrimmed (strCons x xs) | (StrCons x xs) = if (x == '-') then map (\y => negate (fromInteger y)) (parseNumWithoutSign (unpack xs) 0) else if (x == '+') then map fromInteger (parseNumWithoutSign (unpack xs) (cast {from=Int} 0)) else if (x >= '0' && x <= '9') then map fromInteger (parseNumWithoutSign (unpack xs) (cast (ord x - ord '0'))) else Nothing ||| Convert a number string to a Double. ||| ||| ```idris example ||| parseDouble "+123.123e-2" ||| ``` ||| ```idris example ||| parseDouble {a=Int} " -123.123E+2" ||| ``` ||| ```idris example ||| parseDouble {a=Int} " +123.123" ||| ``` export -- it's a bit too slow at compile time covering parseDouble : String -> Maybe Double parseDouble = mkDouble . wfe . trim where intPow : Integer -> Integer -> Double intPow base exp = assert_total $ if exp > 0 then (num base exp) else 1 / (num base exp) where num : Integer -> Integer -> Double num base 0 = 1 num base e = if e < 0 then cast base * num base (e + 1) else cast base * num base (e - 1) natpow : Double -> Nat -> Double natpow x Z = 1 natpow x (S n) = x * (natpow x n) mkDouble : Maybe (Double, Double, Integer) -> Maybe Double mkDouble (Just (w, f, e)) = let ex = intPow 10 e in Just $ (w * ex + f * ex) mkDouble Nothing = Nothing wfe : String -> Maybe (Double, Double, Integer) wfe cs = case split (== '.') cs of (wholeAndExp ::: []) => case split (\c => c == 'e' || c == 'E') wholeAndExp of (whole:::exp::[]) => do w <- cast {from=Integer} <$> parseInteger whole e <- parseInteger exp pure (w, 0, e) (whole:::[]) => do w <- cast {from=Integer} <$> parseInteger whole pure (w, 0, 0) _ => Nothing (whole:::fracAndExp::[]) => case split (\c => c == 'e' || c == 'E') fracAndExp of ("":::exp::[]) => Nothing (frac:::exp::[]) => do w <- cast {from=Integer} <$> parseInteger whole f <- (/ (natpow 10 (length frac))) <$> (cast <$> parseNumWithoutSign (unpack frac) 0) e <- parseInteger exp pure (w, if w < 0 then (-f) else f, e) (frac:::[]) => do w <- cast {from=Integer} <$> parseInteger whole f <- (/ (natpow 10 (length frac))) <$> (cast <$> parseNumWithoutSign (unpack frac) 0) pure (w, if w < 0 then (-f) else f, 0) _ => Nothing _ => Nothing