(define (blodwen-os) (case (machine-type) [(i3le ti3le a6le ta6le tarm64le) "unix"] ; GNU/Linux [(i3ob ti3ob a6ob ta6ob tarm64ob) "unix"] ; OpenBSD [(i3fb ti3fb a6fb ta6fb tarm64fb) "unix"] ; FreeBSD [(i3nb ti3nb a6nb ta6nb tarm64nb) "unix"] ; NetBSD [(i3osx ti3osx a6osx ta6osx tarm64osx) "darwin"] [(i3nt ti3nt a6nt ta6nt tarm64nt) "windows"] [else "unknown"])) (define blodwen-lazy (lambda (f) (let ([evaluated #f] [res void]) (lambda () (if (not evaluated) (begin (set! evaluated #t) (set! res (f)) (set! f void)) (void)) res)))) (define (blodwen-toSignedInt x bits) (if (logbit? bits x) (logor x (ash -1 bits)) (logand x (sub1 (ash 1 bits))))) (define (blodwen-toUnsignedInt x bits) (logand x (sub1 (ash 1 bits)))) (define (blodwen-euclidDiv a b) (let ((q (quotient a b)) (r (remainder a b))) (if (< r 0) (if (> b 0) (- q 1) (+ q 1)) q))) (define (blodwen-euclidMod a b) (let ((r (remainder a b))) (if (< r 0) (if (> b 0) (+ r b) (- r b)) r))) ; flonum constants (define (blodwen-calcFlonumUnitRoundoff) (let loop [(uro 1.0)] (if (fl= 1.0 (fl+ 1.0 uro)) uro (loop (fl/ uro 2.0))))) (define (blodwen-calcFlonumEpsilon) (fl* (blodwen-calcFlonumUnitRoundoff) 2.0)) (define (blodwen-flonumNaN) +nan.0) (define (blodwen-flonumInf) +inf.0) ; Bits (define bu+ (lambda (x y bits) (blodwen-toUnsignedInt (+ x y) bits))) (define bu- (lambda (x y bits) (blodwen-toUnsignedInt (- x y) bits))) (define bu* (lambda (x y bits) (blodwen-toUnsignedInt (* x y) bits))) (define bu/ (lambda (x y bits) (blodwen-toUnsignedInt (quotient x y) bits))) (define bs+ (lambda (x y bits) (blodwen-toSignedInt (+ x y) bits))) (define bs- (lambda (x y bits) (blodwen-toSignedInt (- x y) bits))) (define bs* (lambda (x y bits) (blodwen-toSignedInt (* x y) bits))) (define bs/ (lambda (x y bits) (blodwen-toSignedInt (blodwen-euclidDiv x y) bits))) (define (integer->bits8 x) (logand x (sub1 (ash 1 8)))) (define (integer->bits16 x) (logand x (sub1 (ash 1 16)))) (define (integer->bits32 x) (logand x (sub1 (ash 1 32)))) (define (integer->bits64 x) (logand x (sub1 (ash 1 64)))) (define (bits16->bits8 x) (logand x (sub1 (ash 1 8)))) (define (bits32->bits8 x) (logand x (sub1 (ash 1 8)))) (define (bits64->bits8 x) (logand x (sub1 (ash 1 8)))) (define (bits32->bits16 x) (logand x (sub1 (ash 1 16)))) (define (bits64->bits16 x) (logand x (sub1 (ash 1 16)))) (define (bits64->bits32 x) (logand x (sub1 (ash 1 32)))) (define (blodwen-bits-shl-signed x y bits) (blodwen-toSignedInt (ash x y) bits)) (define (blodwen-bits-shl x y bits) (logand (ash x y) (sub1 (ash 1 bits)))) (define blodwen-shl (lambda (x y) (ash x y))) (define blodwen-shr (lambda (x y) (ash x (- y)))) (define blodwen-and (lambda (x y) (logand x y))) (define blodwen-or (lambda (x y) (logor x y))) (define blodwen-xor (lambda (x y) (logxor x y))) (define cast-num (lambda (x) (if (number? x) x 0))) (define destroy-prefix (lambda (x) (cond ((equal? x "") "") ((equal? (string-ref x 0) #\#) "") (else x)))) (define exact-floor (lambda (x) (inexact->exact (floor x)))) (define exact-truncate (lambda (x) (inexact->exact (truncate x)))) (define exact-truncate-boundedInt (lambda (x y) (blodwen-toSignedInt (exact-truncate x) y))) (define exact-truncate-boundedUInt (lambda (x y) (blodwen-toUnsignedInt (exact-truncate x) y))) (define cast-char-boundedInt (lambda (x y) (blodwen-toSignedInt (char->integer x) y))) (define cast-char-boundedUInt (lambda (x y) (blodwen-toUnsignedInt (char->integer x) y))) (define cast-string-int (lambda (x) (exact-truncate (cast-num (string->number (destroy-prefix x)))))) (define cast-string-boundedInt (lambda (x y) (blodwen-toSignedInt (cast-string-int x) y))) (define cast-string-boundedUInt (lambda (x y) (blodwen-toUnsignedInt (cast-string-int x) y))) (define cast-int-char (lambda (x) (if (or (and (>= x 0) (<= x #xd7ff)) (and (>= x #xe000) (<= x #x10ffff))) (integer->char x) (integer->char 0)))) (define cast-string-double (lambda (x) (exact->inexact (cast-num (string->number (destroy-prefix x)))))) (define (string-concat xs) (apply string-append xs)) (define (string-unpack s) (string->list s)) (define (string-pack xs) (list->string xs)) (define string-cons (lambda (x y) (string-append (string x) y))) (define string-reverse (lambda (x) (list->string (reverse (string->list x))))) (define (string-substr off len s) (let* ((l (string-length s)) (b (max 0 off)) (x (max 0 len)) (end (min l (+ b x)))) (if (> b l) "" (substring s b end)))) (define (blodwen-string-iterator-new s) 0) (define (blodwen-string-iterator-to-string _ s ofs f) (f (substring s ofs (string-length s)))) (define (blodwen-string-iterator-next s ofs) (if (>= ofs (string-length s)) '() ; EOF (cons (string-ref s ofs) (+ ofs 1)))) (define either-left (lambda (x) (vector 0 x))) (define either-right (lambda (x) (vector 1 x))) (define blodwen-error-quit (lambda (msg) (display msg) (newline) (exit 1))) (define (blodwen-get-line p) (if (port? p) (let ((str (get-line p))) (if (eof-object? str) "" str)) void)) (define (blodwen-get-char p) (if (port? p) (let ((chr (get-char p))) (if (eof-object? chr) #\nul chr)) void)) ;; Buffers (define (blodwen-new-buffer size) (make-bytevector size 0)) (define (blodwen-buffer-size buf) (bytevector-length buf)) (define (blodwen-buffer-setbyte buf loc val) (bytevector-u8-set! buf loc val)) (define (blodwen-buffer-getbyte buf loc) (bytevector-u8-ref buf loc)) (define (blodwen-buffer-setbits16 buf loc val) (bytevector-u16-set! buf loc val (native-endianness))) (define (blodwen-buffer-getbits16 buf loc) (bytevector-u16-ref buf loc (native-endianness))) (define (blodwen-buffer-setbits32 buf loc val) (bytevector-u32-set! buf loc val (native-endianness))) (define (blodwen-buffer-getbits32 buf loc) (bytevector-u32-ref buf loc (native-endianness))) (define (blodwen-buffer-setbits64 buf loc val) (bytevector-u64-set! buf loc val (native-endianness))) (define (blodwen-buffer-getbits64 buf loc) (bytevector-u64-ref buf loc (native-endianness))) (define (blodwen-buffer-setint8 buf loc val) (bytevector-s8-set! buf loc val)) (define (blodwen-buffer-getint8 buf loc) (bytevector-s8-ref buf loc)) (define (blodwen-buffer-setint16 buf loc val) (bytevector-s16-set! buf loc val (native-endianness))) (define (blodwen-buffer-getint16 buf loc) (bytevector-s16-ref buf loc (native-endianness))) (define (blodwen-buffer-setint32 buf loc val) (bytevector-s32-set! buf loc val (native-endianness))) (define (blodwen-buffer-getint32 buf loc) (bytevector-s32-ref buf loc (native-endianness))) (define (blodwen-buffer-setint buf loc val) (bytevector-s64-set! buf loc val (native-endianness))) (define (blodwen-buffer-getint buf loc) (bytevector-s64-ref buf loc (native-endianness))) (define (blodwen-buffer-setint64 buf loc val) (bytevector-s64-set! buf loc val (native-endianness))) (define (blodwen-buffer-getint64 buf loc) (bytevector-s64-ref buf loc (native-endianness))) (define (blodwen-buffer-setdouble buf loc val) (bytevector-ieee-double-set! buf loc val (native-endianness))) (define (blodwen-buffer-getdouble buf loc) (bytevector-ieee-double-ref buf loc (native-endianness))) (define (blodwen-stringbytelen str) (bytevector-length (string->utf8 str))) (define (blodwen-buffer-setstring buf loc val) (let* [(strvec (string->utf8 val)) (len (bytevector-length strvec))] (bytevector-copy! strvec 0 buf loc len))) (define (blodwen-buffer-getstring buf loc len) (let [(newvec (make-bytevector len))] (bytevector-copy! buf loc newvec 0 len) (utf8->string newvec))) (define (blodwen-buffer-copydata buf start len dest loc) (bytevector-copy! buf start dest loc len)) ;; Threads (define-record thread-handle (semaphore)) (define (blodwen-thread proc) (let [(sema (blodwen-make-semaphore 0))] (fork-thread (lambda () (proc (vector 0)) (blodwen-semaphore-post sema))) (make-thread-handle sema) )) (define (blodwen-thread-wait handle) (blodwen-semaphore-wait (thread-handle-semaphore handle))) ;; Thread mailboxes (define blodwen-thread-data (make-thread-parameter #f)) (define (blodwen-get-thread-data ty) (blodwen-thread-data)) (define (blodwen-set-thread-data ty a) (blodwen-thread-data a)) ;; Semaphore (define-record semaphore (box mutex condition)) (define (blodwen-make-semaphore init) (make-semaphore (box init) (make-mutex) (make-condition))) (define (blodwen-semaphore-post sema) (with-mutex (semaphore-mutex sema) (let [(sema-box (semaphore-box sema))] (set-box! sema-box (+ (unbox sema-box) 1)) (condition-signal (semaphore-condition sema)) ))) (define (blodwen-semaphore-wait sema) (with-mutex (semaphore-mutex sema) (let [(sema-box (semaphore-box sema))] (when (= (unbox sema-box) 0) (condition-wait (semaphore-condition sema) (semaphore-mutex sema))) (set-box! sema-box (- (unbox sema-box) 1)) ))) ;; Barrier (define-record barrier (count-box num-threads mutex cond)) (define (blodwen-make-barrier num-threads) (make-barrier (box 0) num-threads (make-mutex) (make-condition))) (define (blodwen-barrier-wait barrier) (let [(count-box (barrier-count-box barrier)) (num-threads (barrier-num-threads barrier)) (mutex (barrier-mutex barrier)) (condition (barrier-cond barrier))] (with-mutex mutex (let* [(count-old (unbox count-box)) (count-new (+ count-old 1))] (set-box! count-box count-new) (if (= count-new num-threads) (condition-broadcast condition) (condition-wait condition mutex)) )))) ;; Channel ; With thanks to Alain Zscheile (@zseri) for help with understanding condition ; variables, and figuring out where the problems were and how to solve them. (define-record channel (read-mut read-cv read-box val-cv val-box)) (define (blodwen-make-channel ty) (make-channel (make-mutex) (make-condition) (box #t) (make-condition) (box '()) )) ; block on the read status using read-cv until the value has been read (define (channel-put-while-helper chan) (let ([read-mut (channel-read-mut chan)] [read-box (channel-read-box chan)] [read-cv (channel-read-cv chan)] ) (if (unbox read-box) (void) ; val has been read, so everything is fine (begin ; otherwise, block/spin with cv (condition-wait read-cv read-mut) (channel-put-while-helper chan) ) ))) (define (blodwen-channel-put ty chan val) (with-mutex (channel-read-mut chan) (channel-put-while-helper chan) (let ([read-box (channel-read-box chan)] [val-box (channel-val-box chan)] ) (set-box! val-box val) (set-box! read-box #f) )) (condition-signal (channel-val-cv chan)) ) ; block on the value until it has been set (define (channel-get-while-helper chan) (let ([read-mut (channel-read-mut chan)] [read-box (channel-read-box chan)] [val-cv (channel-val-cv chan)] ) (if (unbox read-box) (begin (condition-wait val-cv read-mut) (channel-get-while-helper chan) ) (void) ))) (define (blodwen-channel-get ty chan) (mutex-acquire (channel-read-mut chan)) (channel-get-while-helper chan) (let* ([val-box (channel-val-box chan)] [read-box (channel-read-box chan)] [read-cv (channel-read-cv chan)] [the-val (unbox val-box)] ) (set-box! val-box '()) (set-box! read-box #t) (mutex-release (channel-read-mut chan)) (condition-signal read-cv) the-val)) ;; Mutex (define (blodwen-make-mutex) (make-mutex)) (define (blodwen-mutex-acquire mutex) (mutex-acquire mutex)) (define (blodwen-mutex-release mutex) (mutex-release mutex)) ;; Condition variable (define (blodwen-make-condition) (make-condition)) (define (blodwen-condition-wait condition mutex) (condition-wait condition mutex)) (define (blodwen-condition-wait-timeout condition mutex timeout) (let* [(sec (div timeout 1000000)) (micro (mod timeout 1000000))] (condition-wait condition mutex (make-time 'time-duration (* 1000 micro) sec)))) (define (blodwen-condition-signal condition) (condition-signal condition)) (define (blodwen-condition-broadcast condition) (condition-broadcast condition)) ;; Future (define-record future-internal (result ready mutex signal)) (define (blodwen-make-future work) (let ([future (make-future-internal #f #f (make-mutex) (make-condition))]) (fork-thread (lambda () (let ([result (work)]) (with-mutex (future-internal-mutex future) (set-future-internal-result! future result) (set-future-internal-ready! future #t) (condition-broadcast (future-internal-signal future)))))) future)) (define (blodwen-await-future ty future) (let ([mutex (future-internal-mutex future)]) (with-mutex mutex (if (not (future-internal-ready future)) (condition-wait (future-internal-signal future) mutex)) (future-internal-result future)))) (define (blodwen-sleep s) (sleep (make-time 'time-duration 0 s))) (define (blodwen-usleep s) (let ((sec (div s 1000000)) (micro (mod s 1000000))) (sleep (make-time 'time-duration (* 1000 micro) sec)))) (define (blodwen-clock-time-utc) (current-time 'time-utc)) (define (blodwen-clock-time-monotonic) (current-time 'time-monotonic)) (define (blodwen-clock-time-duration) (current-time 'time-duration)) (define (blodwen-clock-time-process) (current-time 'time-process)) (define (blodwen-clock-time-thread) (current-time 'time-thread)) (define (blodwen-clock-time-gccpu) (current-time 'time-collector-cpu)) (define (blodwen-clock-time-gcreal) (current-time 'time-collector-real)) (define (blodwen-is-time? clk) (if (time? clk) 1 0)) (define (blodwen-clock-second time) (time-second time)) (define (blodwen-clock-nanosecond time) (time-nanosecond time)) (define (blodwen-arg-count) (length (command-line))) (define (blodwen-arg n) (if (< n (length (command-line))) (list-ref (command-line) n) "")) (define (blodwen-hasenv var) (if (eq? (getenv var) #f) 0 1)) ;; Randoms (define random-seed-register 0) (define (initialize-random-seed-once) (if (= (virtual-register random-seed-register) 0) (let ([seed (time-nanosecond (current-time))]) (set-virtual-register! random-seed-register seed) (random-seed seed)))) (define (blodwen-random-seed seed) (set-virtual-register! random-seed-register seed) (random-seed seed)) (define blodwen-random (case-lambda ;; no argument, pick a real value from [0, 1.0) [() (begin (initialize-random-seed-once) (random 1.0))] ;; single argument k, pick an integral value from [0, k) [(k) (begin (initialize-random-seed-once) (if (> k 0) (random k) (assertion-violationf 'blodwen-random "invalid range argument ~a" k)))])) ;; For finalisers (define blodwen-finaliser (make-guardian)) (define (blodwen-register-object obj proc) (let [(x (cons obj proc))] (blodwen-finaliser x) x)) (define blodwen-run-finalisers (lambda () (let run () (let ([x (blodwen-finaliser)]) (when x (((cdr x) (car x)) 'erased) (run)))))) ;; For creating and reading back scheme objects ; read a scheme string and evaluate it, returning 'Just result' on success ; TODO: catch exception! (define (blodwen-eval-scheme str) (guard (x [#t '()]) ; Nothing on failure (box (eval (read (open-input-string str))))) ); box == Just (define (blodwen-eval-okay obj) (if (null? obj) 0 1)) (define (blodwen-get-eval-result obj) (unbox obj)) (define (blodwen-debug-scheme obj) (display obj) (newline)) (define (blodwen-is-number obj) (if (number? obj) 1 0)) (define (blodwen-is-integer obj) (if (and (number? obj) (exact? obj)) 1 0)) (define (blodwen-is-float obj) (if (flonum? obj) 1 0)) (define (blodwen-is-char obj) (if (char? obj) 1 0)) (define (blodwen-is-string obj) (if (string? obj) 1 0)) (define (blodwen-is-procedure obj) (if (procedure? obj) 1 0)) (define (blodwen-is-symbol obj) (if (symbol? obj) 1 0)) (define (blodwen-is-vector obj) (if (vector? obj) 1 0)) (define (blodwen-is-nil obj) (if (null? obj) 1 0)) (define (blodwen-is-pair obj) (if (pair? obj) 1 0)) (define (blodwen-is-box obj) (if (box? obj) 1 0)) (define (blodwen-make-symbol str) (string->symbol str)) ; The below rely on checking that the objects are the right type first. (define (blodwen-vector-ref obj i) (vector-ref obj i)) (define (blodwen-vector-length obj) (vector-length obj)) (define (blodwen-vector-list obj) (vector->list obj)) (define (blodwen-unbox obj) (unbox obj)) (define (blodwen-apply obj arg) (obj arg)) (define (blodwen-force obj) (obj)) (define (blodwen-read-symbol sym) (symbol->string sym)) (define (blodwen-id x) x)