module Control.Applicative.Const import Data.Contravariant import Data.Bits public export record Const (a : Type) (b : Type) where constructor MkConst runConst : a public export Eq a => Eq (Const a b) where (==) = (==) `on` runConst public export Ord a => Ord (Const a b) where compare = compare `on` runConst export Show a => Show (Const a b) where showPrec p (MkConst v) = showCon p "MkConst" (showArg v) public export Semigroup a => Semigroup (Const a b) where MkConst x <+> MkConst y = MkConst (x <+> y) public export Monoid a => Monoid (Const a b) where neutral = MkConst neutral public export Num a => Num (Const a b) where MkConst x + MkConst y = MkConst (x + y) MkConst x * MkConst y = MkConst (x * y) fromInteger = MkConst . fromInteger public export Neg a => Neg (Const a b) where negate (MkConst x) = MkConst (negate x) MkConst x - MkConst y = MkConst (x - y) public export Abs a => Abs (Const a b) where abs (MkConst x) = MkConst (abs x) public export Fractional a => Fractional (Const a b) where recip (MkConst x) = MkConst (recip x) MkConst x / MkConst y = MkConst (x / y) public export Integral a => Integral (Const a b) where MkConst x `div` MkConst y = MkConst (x `div` y) MkConst x `mod` MkConst y = MkConst (x `mod` y) public export Bits a => Bits (Const a b) where Index = Index {a} MkConst x .&. MkConst y = MkConst (x .&. y) MkConst x .|. MkConst y = MkConst (x .|. y) MkConst x `xor` MkConst y = MkConst (x `xor` y) shiftL (MkConst v) ix = MkConst (shiftL v ix) shiftR (MkConst v) ix = MkConst (shiftR v ix) bit = MkConst . bit zeroBits = MkConst zeroBits complement (MkConst v) = MkConst (complement v) oneBits = MkConst oneBits complementBit (MkConst v) ix = MkConst (complementBit v ix) clearBit (MkConst v) ix = MkConst (clearBit v ix) testBit (MkConst v) ix = testBit v ix setBit (MkConst v) ix = MkConst (setBit v ix) public export FromString a => FromString (Const a b) where fromString = MkConst . fromString public export Functor (Const a) where map _ (MkConst v) = MkConst v public export Contravariant (Const a) where contramap _ (MkConst v) = MkConst v public export Monoid a => Applicative (Const a) where pure _ = MkConst neutral MkConst x <*> MkConst y = MkConst (x <+> y) public export Foldable (Const a) where foldr _ acc _ = acc foldl _ acc _ = acc null _ = True public export Traversable (Const a) where traverse _ (MkConst v) = pure (MkConst v) public export Bifunctor Const where bimap f _ (MkConst v) = MkConst (f v) public export Bifoldable Const where bifoldr f _ acc (MkConst v) = f v acc bifoldl f _ acc (MkConst v) = f acc v binull _ = False public export Bitraversable Const where bitraverse f _ (MkConst v) = MkConst <$> f v