module Data.SortedSet import Data.Maybe import Data.SortedMap export data SortedSet k = SetWrapper (Data.SortedMap.SortedMap k ()) export empty : Ord k => SortedSet k empty = SetWrapper Data.SortedMap.empty export insert : k -> SortedSet k -> SortedSet k insert k (SetWrapper m) = SetWrapper (Data.SortedMap.insert k () m) export delete : k -> SortedSet k -> SortedSet k delete k (SetWrapper m) = SetWrapper (Data.SortedMap.delete k m) export contains : k -> SortedSet k -> Bool contains k (SetWrapper m) = isJust (Data.SortedMap.lookup k m) export fromList : Ord k => List k -> SortedSet k fromList l = SetWrapper (Data.SortedMap.fromList (map (\i => (i, ())) l)) export toList : SortedSet k -> List k toList (SetWrapper m) = map (\(i, _) => i) (Data.SortedMap.toList m) export Foldable SortedSet where foldr f e xs = foldr f e (Data.SortedSet.toList xs) null (SetWrapper m) = null m ||| Set union. Inserts all elements of x into y export union : (x, y : SortedSet k) -> SortedSet k union x y = foldr insert x y ||| Set difference. Delete all elments in y from x export difference : (x, y : SortedSet k) -> SortedSet k difference x y = foldr delete x y ||| Set symmetric difference. Uses the union of the differences. export symDifference : (x, y : SortedSet k) -> SortedSet k symDifference x y = union (difference x y) (difference y x) ||| Set intersection. Implemented as the difference of the union and the symetric difference. export intersection : (x, y : SortedSet k) -> SortedSet k intersection x y = difference x (difference x y) export Ord k => Semigroup (SortedSet k) where (<+>) = union export Ord k => Monoid (SortedSet k) where neutral = empty export Eq k => Eq (SortedSet k) where SetWrapper x == SetWrapper y = x == y export Show k => Show (SortedSet k) where show m = "fromList " ++ (show $ toList m) export keySet : SortedMap k v -> SortedSet k keySet = SetWrapper . map (const ()) export singleton : Ord k => k -> SortedSet k singleton k = insert k empty