||| Deriving foldable instances using reflection ||| You can for instance define: ||| ``` ||| data Tree a = Leaf a | Node (Tree a) (Tree a) ||| treeFoldable : Foldable Tree ||| treeFoldable = %runElab derive ||| ``` module Deriving.Foldable import public Control.Monad.Either import public Control.Monad.State import public Data.List1 import public Data.Maybe import public Data.Morphisms import public Decidable.Equality import public Language.Reflection import public Deriving.Common %language ElabReflection %default total public export fromFoldMap : (0 f : Type -> Type) -> (forall a, b. Monoid b => (a -> b) -> f a -> b) -> Foldable f fromFoldMap f fm = MkFoldable foldr foldl (foldr (\_, _ => False) True) (\ cons => foldl (\ acc, x => acc >>= flip cons x) . pure) (foldr (::) []) fm where foldr : forall a, b. (a -> b -> b) -> b -> f a -> b foldr cons base t = applyEndo (fm (Endo . cons) t) base foldl : forall a, b. (b -> a -> b) -> b -> f a -> b foldl cons base t = foldr (flip (.) . flip cons) id t base ------------------------------------------------------------------------------ -- Errors ||| Possible errors for the functor-deriving machinery. public export data Error : Type where NotFreeOf : Name -> TTImp -> Error NotAnApplication : TTImp -> Error NotAFoldable : TTImp -> Error NotABifoldable : TTImp -> Error NotFoldableInItsLastArg : TTImp -> Error UnsupportedType : TTImp -> Error NotAFiniteStructure : Error NotAnUnconstrainedValue : Count -> Error InvalidGoal : Error ConfusingReturnType : Error -- Contextual information WhenCheckingConstructor : Name -> Error -> Error WhenCheckingArg : TTImp -> Error -> Error export Show Error where show = joinBy "\n" . go [<] where go : SnocList String -> Error -> List String go acc (NotFreeOf x ty) = acc <>> ["The term \{show ty} is not free of \{show x}"] go acc (NotAnApplication s) = acc <>> ["The type \{show s} is not an application"] go acc (NotAFoldable s) = acc <>> ["Couldn't find a `Foldable' instance for the type constructor \{show s}"] go acc (NotABifoldable s) = acc <>> ["Couldn't find a `Bifoldable' instance for the type constructor \{show s}"] go acc (NotFoldableInItsLastArg s) = acc <>> ["Not foldable in its last argument \{show s}"] go acc (UnsupportedType s) = acc <>> ["Unsupported type \{show s}"] go acc NotAFiniteStructure = acc <>> ["Cannot fold over an infinite structure"] go acc (NotAnUnconstrainedValue rig) = acc <>> ["Cannot fold over a \{enunciate rig} value"] go acc InvalidGoal = acc <>> ["Expected a goal of the form `Foldable f`"] go acc ConfusingReturnType = acc <>> ["Confusing telescope"] go acc (WhenCheckingConstructor nm err) = go (acc :< "When checking constructor \{show nm}") err go acc (WhenCheckingArg s err) = go (acc :< "When checking argument of type \{show s}") err record Parameters where constructor MkParameters asFoldables : List Nat asBifoldables : List Nat initParameters : Parameters initParameters = MkParameters [] [] paramConstraints : Parameters -> Nat -> Maybe TTImp paramConstraints params pos = IVar emptyFC `{Prelude.Interfaces.Foldable} <$ guard (pos `elem` params.asFoldables) <|> IVar emptyFC `{Prelude.Interfaces.Bifoldable} <$ guard (pos `elem` params.asBifoldables) ------------------------------------------------------------------------------ -- Core machinery: being foldable -- Not meant to be re-exported as it's using the internal notion of error isFreeOf' : {0 m : Type -> Type} -> {auto elab : Elaboration m} -> {auto error : MonadError Error m} -> (x : Name) -> (ty : TTImp) -> m (IsFreeOf x ty) isFreeOf' x ty = case isFreeOf x ty of Nothing => throwError (NotFreeOf x ty) Just prf => pure prf ||| IsFoldableIn is parametrised by ||| @ t the name of the data type whose constructors are being analysed ||| @ x the name of the type variable that the foldable action will act on ||| @ ty the type being analysed ||| The inductive type delivers a proof that x can be folded over in ty, ||| assuming that t also is foldable. public export data IsFoldableIn : (t, x : Name) -> (ty : TTImp) -> Type where ||| The type variable x occurs alone FIVar : IsFoldableIn t x (IVar fc x) ||| There is a recursive subtree of type (t a1 ... an u) and u is Foldable in x. ||| We do not insist that u is exactly x so that we can deal with nested types ||| like the following: ||| data Full a = Leaf a | Node (Full (a, a)) ||| data Term a = Var a | App (Term a) (Term a) | Lam (Term (Maybe a)) FIRec : (0 _ : IsAppView (_, t) _ f) -> IsFoldableIn t x arg -> IsFoldableIn t x (IApp fc f arg) ||| The subterm is delayed (Lazy only, we can't fold over infinite structures) FIDelayed : IsFoldableIn t x ty -> IsFoldableIn t x (IDelayed fc LLazy ty) ||| There are nested subtrees somewhere inside a 3rd party type constructor ||| which satisfies the Bifoldable interface FIBifold : IsFreeOf x sp -> HasImplementation Bifoldable sp -> IsFoldableIn t x arg1 -> Either (IsFoldableIn t x arg2) (IsFreeOf x arg2) -> IsFoldableIn t x (IApp fc1 (IApp fc2 sp arg1) arg2) ||| There are nested subtrees somewhere inside a 3rd party type constructor ||| which satisfies the Foldable interface FIFold : IsFreeOf x sp -> HasImplementation Foldable sp -> IsFoldableIn t x arg -> IsFoldableIn t x (IApp fc sp arg) ||| A type free of x is trivially Foldable in it FIFree : IsFreeOf x a -> IsFoldableIn t x a parameters {0 m : Type -> Type} {auto elab : Elaboration m} {auto error : MonadError Error m} {auto cs : MonadState Parameters m} (t : Name) (ps : List Name) (x : Name) ||| When analysing the type of a constructor for the type family t, ||| we hope to observe ||| 1. either that it is foldable in x ||| 2. or that it is free of x ||| If it is not the case, we will use the `MonadError Error` constraint ||| to fail with an informative message. public export TypeView : TTImp -> Type TypeView ty = Either (IsFoldableIn t x ty) (IsFreeOf x ty) export fromTypeView : TypeView ty -> IsFoldableIn t x ty fromTypeView (Left prf) = prf fromTypeView (Right fo) = FIFree fo ||| Hoping to observe that ty is functorial export typeView : (ty : TTImp) -> m (TypeView ty) ||| To avoid code duplication in typeView, we have an auxiliary function ||| specifically to handle the application case typeAppView : {fc : FC} -> {f : TTImp} -> IsFreeOf x f -> (arg : TTImp) -> m (TypeView (IApp fc f arg)) typeAppView {fc, f} isFO arg = do chka <- typeView arg case chka of -- if x is present in the argument then the function better be: -- 1. free of x -- 2. either an occurrence of t i.e. a subterm -- or a type constructor already known to be functorial Left sp => do let Just (MkAppView (_, hd) ts prf) = appView f | _ => throwError (NotAnApplication f) case decEq t hd of Yes Refl => pure $ Left (FIRec prf sp) No diff => case !(hasImplementation Foldable f) of Just prf => pure (Left (FIFold isFO prf sp)) Nothing => case hd `elemPos` ps of Just n => do -- record that the nth parameter should be functorial ns <- gets asFoldables let ns = ifThenElse (n `elem` ns) ns (n :: ns) modify { asFoldables := ns } -- and happily succeed logMsg "derive.foldable.assumption" 10 $ "I am assuming that the parameter \{show hd} is a Foldable" pure (Left (FIFold isFO assert_hasImplementation sp)) Nothing => throwError (NotAFoldable f) -- Otherwise it better be the case that f is also free of x so that -- we can mark the whole type as being x-free. Right fo => do Right _ <- typeView f | _ => throwError $ NotFoldableInItsLastArg (IApp fc f arg) pure (Right assert_IsFreeOf) typeView tm@(IVar fc y) = case decEq x y of Yes Refl => pure (Left FIVar) No _ => pure (Right assert_IsFreeOf) typeView fab@(IApp _ (IApp fc1 f arg1) arg2) = do chka1 <- typeView arg1 case chka1 of Right _ => do isFO <- isFreeOf' x (IApp _ f arg1) typeAppView {f = assert_smaller fab (IApp _ f arg1)} isFO arg2 Left sp => do isFO <- isFreeOf' x f case !(hasImplementation Bifoldable f) of Just prf => pure (Left (FIBifold isFO prf sp !(typeView arg2))) Nothing => do let Just (MkAppView (_, hd) ts prf) = appView f | _ => throwError (NotAnApplication f) case hd `elemPos` ps of Just n => do -- record that the nth parameter should be bifoldable ns <- gets asBifoldables let ns = ifThenElse (n `elem` ns) ns (n :: ns) modify { asBifoldables := ns } -- and happily succeed logMsg "derive.foldable.assumption" 10 $ "I am assuming that the parameter \{show hd} is a Bifoldable" pure (Left (FIBifold isFO assert_hasImplementation sp !(typeView arg2))) Nothing => throwError (NotABifoldable f) typeView (IApp _ f arg) = do isFO <- isFreeOf' x f typeAppView isFO arg typeView (IDelayed _ lz f) = case !(typeView f) of Left sp => case lz of LLazy => pure (Left (FIDelayed sp)) _ => throwError NotAFiniteStructure Right _ => pure (Right assert_IsFreeOf) typeView (IPrimVal _ _) = pure (Right assert_IsFreeOf) typeView (IType _) = pure (Right assert_IsFreeOf) typeView ty = case isFreeOf x ty of Nothing => throwError (UnsupportedType ty) Just prf => pure (Right prf) ------------------------------------------------------------------------------ -- Core machinery: building the foldMap function from an IsFoldableIn proof parameters (fc : FC) (mutualWith : List Name) ||| foldMapFun takes ||| @ mutualWith a list of mutually defined type constructors. Calls to their ||| respective mapping functions typically need an assert_total because the ||| termination checker is not doing enough inlining to see that things are ||| terminating ||| @ assert records whether we should mark recursive calls as total because ||| we are currently constructing the argument to a higher order function ||| which will obscure the termination argument. Starts as `Nothing`, becomes ||| `Just False` if an `assert_total` has already been inserted. ||| @ ty the type being transformed by the mapping function ||| @ rec the name of the mapping function being defined (used for recursive calls) ||| @ f the name of the function we're mapping ||| @ arg the (optional) name of the argument being mapped over. This lets us use ||| Nothing when generating arguments to higher order functions so that we generate ||| the eta contracted `map (mapTree f)` instead of `map (\ ts => mapTree f ts)`. foldMapFun : (assert : Maybe Bool) -> {ty : TTImp} -> IsFoldableIn t x ty -> (rec, f : Name) -> (arg : Maybe TTImp) -> TTImp foldMapFun assert FIVar rec f t = apply fc (IVar fc f) (toList t) foldMapFun assert (FIRec y sp) rec f t -- only add assert_total if it is declared to be needed = ifThenElse (fromMaybe False assert) (IApp fc (IVar fc (UN $ Basic "assert_total"))) id $ apply fc (IVar fc rec) (foldMapFun (Just False) sp rec f Nothing :: toList t) foldMapFun assert (FIDelayed sp) rec f Nothing -- here we need to eta-expand to avoid "Lazy t does not unify with t" errors = let nm = UN $ Basic "eta" in ILam fc MW ExplicitArg (Just nm) (IDelayed fc LLazy (Implicit fc False)) $ foldMapFun assert sp rec f (Just (IVar fc nm)) foldMapFun assert (FIDelayed sp) rec f (Just t) = foldMapFun assert sp rec f (Just t) foldMapFun assert {ty = IApp _ ty _} (FIFold _ _ sp) rec f t -- only add assert_total if we are calling a mutually defined Foldable implementation. = let isMutual = fromMaybe False (appView ty >>= \ v => pure (snd v.head `elem` mutualWith)) in ifThenElse isMutual (IApp fc (IVar fc (UN $ Basic "assert_total"))) id $ apply fc (IVar fc (UN $ Basic "foldMap")) (foldMapFun ((False <$ guard isMutual) <|> assert <|> Just True) sp rec f Nothing :: toList t) foldMapFun assert (FIBifold _ _ sp1 (Left sp2)) rec f t = apply fc (IVar fc (UN $ Basic "bifoldMap")) (foldMapFun (assert <|> Just True) sp1 rec f Nothing :: foldMapFun (assert <|> Just True) sp2 rec f Nothing :: toList t) foldMapFun assert (FIBifold _ _ sp (Right _)) rec f t = apply fc (IVar fc (UN $ Basic "bifoldMapFst")) (foldMapFun (assert <|> Just True) sp rec f Nothing :: toList t) foldMapFun assert (FIFree y) rec f t = `(mempty) ------------------------------------------------------------------------------ -- User-facing: Foldable deriving namespace Foldable derive' : (Elaboration m, MonadError Error m) => {default Private vis : Visibility} -> {default Total treq : TotalReq} -> {default [] mutualWith : List Name} -> m (Foldable f) derive' = do -- expand the mutualwith names to have the internal, fully qualified, names mutualWith <- map concat $ for mutualWith $ \ nm => do ntys <- getType nm pure (fst <$> ntys) -- The goal should have the shape (Foldable t) Just (IApp _ (IVar _ foldable) t) <- goal | _ => throwError InvalidGoal when (`{Prelude.Interfaces.Foldable} /= foldable) $ logMsg "derive.foldable" 1 "Expected to derive Foldable but got \{show foldable}" -- t should be a type constructor logMsg "derive.foldable" 1 "Deriving Foldable for \{showPrec App $ mapTTImp cleanup t}" MkIsType f params cs <- isType t logMsg "derive.foldable.constructors" 1 $ joinBy "\n" $ "" :: map (\ (n, ty) => " \{showPrefix True $ dropNS n} : \{show $ mapTTImp cleanup ty}") cs -- Generate a clause for each data constructor let fc = emptyFC let un = UN . Basic let foldMapName = un ("foldMap" ++ show (dropNS f)) let funName = un "f" let fun = IVar fc funName (ns, cls) <- runStateT {m = m} initParameters $ for cs $ \ (cName, ty) => withError (WhenCheckingConstructor cName) $ do -- Grab the types of the constructor's explicit arguments let Just (MkConstructorView paras para args) = constructorView ty | _ => throwError ConfusingReturnType logMsg "derive.foldable.clauses" 10 $ "\{showPrefix True (dropNS cName)} (\{joinBy ", " (map (showPrec Dollar . mapTTImp cleanup . unArg . snd) args)})" let vars = map (map (IVar fc . un . ("x" ++) . show . (`minus` 1))) $ zipWith (<$) [1..length args] (map snd args) recs <- for (zip vars args) $ \ (v, (rig, arg)) => do res <- withError (WhenCheckingArg (mapTTImp cleanup (unArg arg))) $ do res <- typeView f paras para (unArg arg) case res of Left _ => case rig of MW => pure () _ => throwError (NotAnUnconstrainedValue rig) _ => pure () pure res pure $ case res of Left sp => -- do not bother with assert_total if you're generating -- a covering/partial definition let useTot = False <$ guard (treq /= Total) in Just (v, Just (foldMapFun fc mutualWith useTot sp foldMapName funName (Just $ unArg v))) Right free => do ignore $ isExplicit v Just (v, Nothing) let (vars, recs) = unzip (catMaybes recs) pure $ PatClause fc (apply fc (IVar fc foldMapName) [ fun, apply (IVar fc cName) vars]) (case catMaybes recs of [] => `(neutral) (x :: xs) => foldr1 (\v, vs => `(~(v) <+> ~(vs))) (x ::: xs)) -- Generate the type of the mapping function let paramNames = unArg . fst <$> params let a = un $ freshName paramNames "a" let b = un $ freshName paramNames "b" let va = IVar fc a let vb = IVar fc b let ty = MkTy fc fc foldMapName $ withParams fc (paramConstraints ns) params $ IPi fc M0 ImplicitArg (Just a) (IType fc) $ IPi fc M0 ImplicitArg (Just b) (IType fc) $ `(Monoid ~(vb) => (~(va) -> ~(vb)) -> ~(t) ~(va) -> ~(vb)) logMsg "derive.foldable.clauses" 1 $ joinBy "\n" ("" :: (" " ++ show (mapITy cleanup ty)) :: map ((" " ++) . showClause InDecl . mapClause cleanup) cls) -- Define the instance check $ ILocal fc [ IClaim fc MW vis [Totality treq] ty , IDef fc foldMapName cls ] `(fromFoldMap ~(t) ~(IVar fc foldMapName)) ||| Derive an implementation of Foldable for a type constructor. ||| This can be used like so: ||| ``` ||| data Tree a = Leaf a | Node (Tree a) (Tree a) ||| treeFoldable : Foldable Tree ||| treeFoldable = %runElab derive ||| ``` export derive : {default Private vis : Visibility} -> {default Total treq : TotalReq} -> {default [] mutualWith : List Name} -> Elab (Foldable f) derive = do res <- runEitherT {e = Error, m = Elab} (derive' {vis, treq, mutualWith}) case res of Left err => fail (show err) Right prf => pure prf