(define (blodwen-os) (case (system-type 'os) [(unix) "unix"] [(macosx) "darwin"] [(windows) "windows"] [else "unknown"])) (define blodwen-toSignedInt (lambda (x bits) (if (bitwise-bit-set? x bits) (bitwise-ior x (arithmetic-shift (- 1) bits)) (bitwise-and x (- (arithmetic-shift 1 bits) 1))))) (define blodwen-toUnsignedInt (lambda (x bits) (modulo x (arithmetic-shift 1 bits)))) (define bu+ (lambda (x y bits) (blodwen-toUnsignedInt (+ x y) bits))) (define bu- (lambda (x y bits) (blodwen-toUnsignedInt (- x y) bits))) (define bu* (lambda (x y bits) (blodwen-toUnsignedInt (* x y) bits))) (define bu/ (lambda (x y bits) (blodwen-toUnsignedInt (quotient x y) bits))) (define bs+ (lambda (x y bits) (blodwen-toSignedInt (+ x y) bits))) (define bs- (lambda (x y bits) (blodwen-toSignedInt (- x y) bits))) (define bs* (lambda (x y bits) (blodwen-toSignedInt (* x y) bits))) (define bs/ (lambda (x y bits) (blodwen-toSignedInt (quotient x y) bits))) (define b+ (lambda (x y bits) (remainder (+ x y) (arithmetic-shift 1 bits)))) (define b- (lambda (x y bits) (remainder (- x y) (arithmetic-shift 1 bits)))) (define b* (lambda (x y bits) (remainder (* x y) (arithmetic-shift 1 bits)))) (define b/ (lambda (x y bits) (remainder (exact-floor (/ x y)) (arithmetic-shift 1 bits)))) (define integer->bits8 (lambda (x) (modulo x (expt 2 8)))) (define integer->bits16 (lambda (x) (modulo x (expt 2 16)))) (define integer->bits32 (lambda (x) (modulo x (expt 2 32)))) (define integer->bits64 (lambda (x) (modulo x (expt 2 64)))) (define bits16->bits8 (lambda (x) (modulo x (expt 2 8)))) (define bits32->bits8 (lambda (x) (modulo x (expt 2 8)))) (define bits32->bits16 (lambda (x) (modulo x (expt 2 16)))) (define bits64->bits8 (lambda (x) (modulo x (expt 2 8)))) (define bits64->bits16 (lambda (x) (modulo x (expt 2 16)))) (define bits64->bits32 (lambda (x) (modulo x (expt 2 32)))) (define blodwen-bits-shl (lambda (x y bits) (remainder (arithmetic-shift x y) (arithmetic-shift 1 bits)))) (define blodwen-shl (lambda (x y) (arithmetic-shift x y))) (define blodwen-shr (lambda (x y) (arithmetic-shift x (- y)))) (define blodwen-and (lambda (x y) (bitwise-and x y))) (define blodwen-or (lambda (x y) (bitwise-ior x y))) (define blodwen-xor (lambda (x y) (bitwise-xor x y))) (define exact-floor (lambda (x) (inexact->exact (floor x)))) (define blodwen-bits-shl-signed (lambda (x y bits) (blodwen-toSignedInt (arithmetic-shift x y) bits))) (define exact-truncate (lambda (x) (inexact->exact (truncate x)))) (define exact-truncate-boundedInt (lambda (x y) (blodwen-toSignedInt (exact-truncate x) y))) (define exact-truncate-boundedUInt (lambda (x y) (blodwen-toUnsignedInt (exact-truncate x) y))) (define cast-char-boundedInt (lambda (x y) (blodwen-toSignedInt (char->integer x) y))) (define cast-char-boundedUInt (lambda (x y) (blodwen-toUnsignedInt (char->integer x) y))) (define cast-string-int (lambda (x) (exact-truncate (cast-num (string->number (destroy-prefix x)))))) (define cast-string-boundedInt (lambda (x y) (blodwen-toSignedInt (cast-string-int x) y))) (define cast-string-boundedUInt (lambda (x y) (blodwen-toUnsignedInt (cast-string-int x) y))) (define cast-num (lambda (x) (if (number? x) x 0))) (define destroy-prefix (lambda (x) (cond ((equal? x "") "") ((equal? (string-ref x 0) #\#) "") (else x)))) (define cast-int-char (lambda (x) (if (or (and (>= x 0) (<= x #xd7ff)) (and (>= x #xe000) (<= x #x10ffff))) (integer->char x) (integer->char 0)))) (define cast-string-double (lambda (x) (cast-num (string->number (destroy-prefix x))))) (define (string-concat xs) (apply string-append xs)) (define (string-unpack s) (string->list s)) (define (string-pack xs) (list->string xs)) (define string-cons (lambda (x y) (string-append (string x) y))) (define string-reverse (lambda (x) (list->string (reverse (string->list x))))) (define (string-substr off len s) (let* ((l (string-length s)) (b (max 0 off)) (x (max 0 len)) (end (min l (+ b x)))) (substring s b end))) (define (blodwen-string-iterator-new s) 0) (define (blodwen-string-iterator-to-string _ s ofs f) (f (substring s ofs (string-length s)))) (define (blodwen-string-iterator-next s ofs) (if (>= ofs (string-length s)) '() ; EOF (cons (string-ref s ofs) (+ ofs 1)))) (define either-left (lambda (x) (vector 0 x))) (define either-right (lambda (x) (vector 1 x))) (define blodwen-error-quit (lambda (msg) (display msg) (newline) (exit 1))) (define (blodwen-get-line p) (if (port? p) (let ((str (read-line p))) (if (eof-object? str) "" str)) (void))) (define (blodwen-get-char p) (if (port? p) (let ((chr (read-char p))) (if (eof-object? chr) #\nul chr)) (void))) ;; Buffers (define (blodwen-new-buffer size) (make-bytevector size 0)) (define (blodwen-buffer-size buf) (bytevector-length buf)) (define (blodwen-buffer-setbyte buf loc val) (bytevector-u8-set! buf loc val)) (define (blodwen-buffer-getbyte buf loc) (bytevector-u8-ref buf loc)) (define (blodwen-buffer-setbits16 buf loc val) (bytevector-u16-set! buf loc val (native-endianness))) (define (blodwen-buffer-getbits16 buf loc) (bytevector-u16-ref buf loc (native-endianness))) (define (blodwen-buffer-setbits32 buf loc val) (bytevector-u32-set! buf loc val (native-endianness))) (define (blodwen-buffer-getbits32 buf loc) (bytevector-u32-ref buf loc (native-endianness))) (define (blodwen-buffer-setbits64 buf loc val) (bytevector-u64-set! buf loc val (native-endianness))) (define (blodwen-buffer-getbits64 buf loc) (bytevector-u64-ref buf loc (native-endianness))) (define (blodwen-buffer-setint32 buf loc val) (bytevector-s32-set! buf loc val (native-endianness))) (define (blodwen-buffer-getint32 buf loc) (bytevector-s32-ref buf loc (native-endianness))) (define (blodwen-buffer-setint buf loc val) (bytevector-s64-set! buf loc val (native-endianness))) (define (blodwen-buffer-getint buf loc) (bytevector-s64-ref buf loc (native-endianness))) (define (blodwen-buffer-setdouble buf loc val) (bytevector-ieee-double-set! buf loc val (native-endianness))) (define (blodwen-buffer-getdouble buf loc) (bytevector-ieee-double-ref buf loc (native-endianness))) (define (blodwen-stringbytelen str) (bytevector-length (string->utf8 str))) (define (blodwen-buffer-setstring buf loc val) (let* [(strvec (string->utf8 val)) (len (bytevector-length strvec))] (bytevector-copy! strvec 0 buf loc len))) (define (blodwen-buffer-getstring buf loc len) (let [(newvec (make-bytevector len))] (bytevector-copy! buf loc newvec 0 len) (utf8->string newvec))) (define (blodwen-buffer-copydata buf start len dest loc) (bytevector-copy! buf start dest loc len)) ;; Threads ;; NB: Racket threads are green/virtual threads meaning extra caution is to be ;; taken when using FFI functions in combination with threads. The *entire* ;; Racket runtime blocks on a foreign call, meaning no threads will progress ;; until the foreign call returns. (define (blodwen-thread proc) (thread (lambda () (proc (vector 0))))) (define (blodwen-thread-wait handle) (thread-wait handle)) ;; Thread mailboxes (define blodwen-thread-data (make-thread-cell #f)) (define (blodwen-get-thread-data ty) (thread-cell-ref blodwen-thread-data)) (define (blodwen-set-thread-data ty a) (thread-cell-set! blodwen-thread-data a)) ;; Semaphores (define (blodwen-make-semaphore init) (make-semaphore init)) (define (blodwen-semaphore-post sema) (semaphore-post sema)) (define (blodwen-semaphore-wait sema) (semaphore-wait sema)) ;; Barriers (struct barrier (count-box num-threads mutex semaphore)) (define (blodwen-make-barrier num-threads) (barrier (box 0) num-threads (blodwen-make-mutex) (make-semaphore 0))) (define (blodwen-barrier-wait barrier) (blodwen-mutex-acquire (barrier-mutex barrier)) (let* [(count-box (barrier-count-box barrier)) (count-old (unbox count-box)) (count-new (+ count-old 1)) (sema (barrier-semaphore barrier))] (set-box! count-box count-new) (blodwen-mutex-release (barrier-mutex barrier)) (when (= count-new (barrier-num-threads barrier)) (semaphore-post sema)) (semaphore-wait sema) (semaphore-post sema) )) ;; Channels (define (blodwen-make-channel ty) (make-channel)) (define (blodwen-channel-get ty chan) (channel-get chan)) (define (blodwen-channel-put ty chan val) (channel-put chan val)) ;; Mutex (define (blodwen-make-mutex) (make-semaphore 1)) (define (blodwen-mutex-acquire sema) (semaphore-wait sema)) (define (blodwen-mutex-release sema) (if (semaphore-try-wait? sema) (blodwen-error-quit "Exception in mutexRelease: thread does not own mutex") (semaphore-post sema))) ;; Condition Variables ;; As per p.5 of the MS paper ;; https://www.microsoft.com/en-us/research/wp-content/uploads/2004/12/ImplementingCVs.pdf ; The MS paper has the mutex be part of the CV, but that seems to be contrary to ; most other implementations (struct cv (countingSem waitersLock waiters handshakeSem) #:mutable) ; CONSTRUCTOR (define (blodwen-make-cv) (let ([s (make-semaphore 0)] [x (make-semaphore 1)] [h (make-semaphore 0)]) (cv s x 0 h))) ;; MS paper: sem.V() := sem-post /* "sem.V() increments sem.count, atomically" */ ;; sem.P() := sem-wait ;; (turns out this is Dijkstra's fault: P and V match up with the Dutch ;; terminology) ; WAIT (define (blodwen-cv-wait my-cv m) ; atomically increment waiters (semaphore-wait (cv-waitersLock my-cv)) (set-cv-waiters! my-cv (+ (cv-waiters my-cv) 1)) (semaphore-post (cv-waitersLock my-cv)) ; release the provided mutex (blodwen-mutex-release m) ; wait for the counting semaphore to let us through (semaphore-wait (cv-countingSem my-cv)) ; signal to broadcast that we have proceeded past the critical point/have ; been woken up successfully (semaphore-post (cv-handshakeSem my-cv)) ; re-acquire the provided mutex (blodwen-mutex-acquire m) ) ; SIGNAL (define (blodwen-cv-signal my-cv) ; lock access to waiters (semaphore-wait (cv-waitersLock my-cv)) (let ([waiters (cv-waiters my-cv)]) (if (> waiters 0) ; if we have waiting threads, signal one of them (begin (set-cv-waiters! my-cv (- waiters 1)) ; increment the counting semaphore to wake up a thread (semaphore-post (cv-countingSem my-cv)) ; wait for the thread to tell us it's okay to proceed (semaphore-wait (cv-handshakeSem my-cv)) ) ; otherwise, do nothing (void) ) ; unlock access to waiters (semaphore-post (cv-waitersLock my-cv)) )) ; BROADCAST HELPERS ; for (int i = 0; i < waiters; i++) s.V(); (define (broadcast-for-helper my-cv i) (if (= i 0) ; if i is zero, we're done (void) ; otherwise, we signal one waiting thread, decrement i, and keep going (begin (semaphore-post (cv-countingSem my-cv)) (broadcast-for-helper my-cv (- i 1)) ))) ; while (waiters > 0) { waiters--; h.P(); } (define (broadcast-while-helper my-cv waiters) (if (= waiters 0) ; if waiters is 0, we're done (void) ; otherwise, wait for "waiters" many threads to tell us they're awake (begin (semaphore-wait (cv-handshakeSem my-cv)) (broadcast-while-helper my-cv (- waiters 1)) ))) ; BROADCAST (define (blodwen-cv-broadcast my-cv) ; lock access to waiters (semaphore-wait (cv-waitersLock my-cv)) (let ([waiters (cv-waiters my-cv)]) ; signal "waiters" many threads; counting *until* 0 in the helper ; function, hence "waiters" and NOT "waiters - 1" (broadcast-for-helper my-cv waiters) ; wait on "waiters" many threads to have been woken (broadcast-while-helper my-cv waiters) ; unlock access to waiters (semaphore-post (cv-waitersLock my-cv)) )) ; FIXME: Maybe later. Possibly difficult because of the handshake thingy? ;(define (blodwen-cv-wait-timeout my-cv lockM timeout) ; ;; precondition: calling thread holds lockM ; (semaphore-wait (cv-waitersLock my-cv)) ; x.P() ; (set-cv-waiters! my-cv (+ (cv-waiters my-cv) 1)) ; waiters++ ; (semaphore-post (cv-waitersLock my-cv)) ; x.V() ; (blodwen-mutex-release lockM) ; m.Release() ; ; (sync/timeout (/ timeout 1000000) (cv-countingSem my-cv)) ; ; (semaphore-wait (cv-countingSem my-cv)) ; s.P() ; (semaphore-post (cv-handshakeSem my-cv)) ; h.V() ; (blodwen-mutex-acquire lockM) ; m.Acquire() ; ) (define (blodwen-make-future work) (future work)) (define (blodwen-await-future ty future) (touch future)) ;; NB: These should *ALWAYS* be used in multi-threaded programs since Racket ;; threads are green/virtual threads and so using an external function will ;; block the *entire* runtime until the function returns. This is fine for most ;; things, but not for `sleep`. (define (blodwen-sleep s) (sleep s)) (define (blodwen-usleep us) (sleep (* 0.000001 us))) (define (blodwen-clock-time-utc) (current-time 'time-utc)) (define (blodwen-clock-time-monotonic) (current-time 'time-monotonic)) (define (blodwen-clock-time-duration) (current-time 'time-duration)) (define (blodwen-clock-time-process) (current-time 'time-process)) (define (blodwen-clock-time-thread) (current-time 'time-thread)) (define (blodwen-clock-time-gccpu) 0) ;; unsupported (define (blodwen-clock-time-gcreal) 0) ;; unsupported (define (blodwen-is-time? clk) (if (time? clk) 1 0)) (define (blodwen-clock-second time) (time-second time)) (define (blodwen-clock-nanosecond time) (time-nanosecond time)) (define (blodwen-arg-count) (+ (vector-length (current-command-line-arguments)) 1)) (define (blodwen-arg n) (cond ((= n 0) (path->string (find-system-path 'run-file))) ((< n (+ (vector-length (current-command-line-arguments)) 1)) (vector-ref (current-command-line-arguments) (- n 1))) (else ""))) ;; Randoms (random-seed (date*-nanosecond (current-date))) ; initialize random seed (define (blodwen-random-seed s) (random-seed s)) (define blodwen-random (case-lambda ;; no argument, pick a real value from [0, 1.0) [() (random)] ;; single argument k, pick an integral value from [0, k) [(k) (if (> k 0) (random k) (raise 'blodwen-random-invalid-range-argument))])) ;; For finalisers (define (blodwen-register-object obj proc) (register-finalizer obj (lambda (ptr) ((proc ptr) 'erased))) obj)